論文の概要: DRTR: Distance-Aware Graph Representation Learning
- arxiv url: http://arxiv.org/abs/2406.17281v4
- Date: Thu, 03 Apr 2025 10:37:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-04 12:53:45.819969
- Title: DRTR: Distance-Aware Graph Representation Learning
- Title(参考訳): DRTR:距離対応グラフ表現学習
- Authors: Dong Liu, Yanxuan Yu,
- Abstract要約: 距離対応マルチホップメッセージパッシングと動的トポロジ改善を統合した新しいグラフ学習フレームワークである textbfDRTR を提案する。
emphDistance Recomputatorはアダプティブアテンションを使用して意味的に弱いエッジをプーンし、emphTopology Reconstructorは、遠いが関連するノード間の潜時接続を確立する。
- 参考スコア(独自算出の注目度): 6.185573921868495
- License:
- Abstract: We propose \textbf{DRTR}, a novel graph learning framework that integrates distance-aware multi-hop message passing with dynamic topology refinement. Unlike standard GNNs that rely on shallow, fixed-hop aggregation, DRTR leverages both static preprocessing and dynamic resampling to capture deeper structural dependencies. A \emph{Distance Recomputator} prunes semantically weak edges using adaptive attention, while a \emph{Topology Reconstructor} establishes latent connections among distant but relevant nodes. This joint mechanism enables more expressive and robust representation learning across evolving graph structures. Extensive experiments demonstrate that DRTR outperforms baseline GNNs in both accuracy and scalability, especially in complex and noisy graph environments.
- Abstract(参考訳): 距離対応マルチホップメッセージパッシングと動的トポロジ改善を統合したグラフ学習フレームワークである \textbf{DRTR} を提案する。
浅い固定ホップ集約に依存する通常のGNNとは異なり、DRTRは静的前処理と動的再サンプリングの両方を活用して、より深い構造的依存関係をキャプチャする。
a \emph{Distance Recomputator} は適応的な注意力を用いて意味的に弱いエッジを創り出し、一方 a \emph{Topology Reconstructor} は、遠いが関連するノード間の遅延接続を確立する。
この結合機構は、進化するグラフ構造をまたいだより表現的かつ堅牢な表現学習を可能にする。
大規模な実験により、DRTRは、特に複雑でノイズの多いグラフ環境において、精度とスケーラビリティの両方でベースラインGNNより優れていることが示された。
関連論文リスト
- Learning to Model Graph Structural Information on MLPs via Graph Structure Self-Contrasting [50.181824673039436]
本稿では,グラフ構造情報をメッセージパッシングなしで学習するグラフ構造自己コントラスト(GSSC)フレームワークを提案する。
提案するフレームワークは,構造情報を事前知識として暗黙的にのみ組み込む,MLP(Multi-Layer Perceptrons)に基づいている。
これはまず、近傍の潜在的非形式的あるいはノイズの多いエッジを取り除くために構造的スペーシングを適用し、その後、スペーシングされた近傍で構造的自己コントラストを行い、ロバストなノード表現を学ぶ。
論文 参考訳(メタデータ) (2024-09-09T12:56:02Z) - A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
グラフ構造を先行として扱うことで,特徴中心の事前学習の視点を導入する。
我々のフレームワークであるGraph Sequence Pretraining with Transformer (GSPT)はランダムウォークを通してノードコンテキストをサンプリングする。
GSPTはノード分類とリンク予測の両方に容易に適応でき、様々なデータセットで有望な経験的成功を示す。
論文 参考訳(メタデータ) (2024-06-19T22:30:08Z) - Unleashing the Potential of Text-attributed Graphs: Automatic Relation Decomposition via Large Language Models [31.443478448031886]
RoSE (Relation-oriented Semantic Edge-Decomposition) は、生のテキスト属性を分析してグラフ構造を分解する新しいフレームワークである。
我々のフレームワークは、さまざまなデータセットのノード分類性能を大幅に向上させ、ウィスコンシンデータセットでは最大16%の改善を実現した。
論文 参考訳(メタデータ) (2024-05-28T20:54:47Z) - Graph Data Condensation via Self-expressive Graph Structure Reconstruction [7.4525875528900665]
我々は textbfSelf-presentive Graph Structure textbfReconstruction による textbfGraph Data textbfCondensation という新しいフレームワークを紹介した。
提案手法は,元のグラフ構造を凝縮過程に明示的に組み込んで,凝縮ノード間の不規則な相互依存性を捕捉する。
論文 参考訳(メタデータ) (2024-03-12T03:54:25Z) - Chasing Fairness in Graphs: A GNN Architecture Perspective [73.43111851492593]
グラフニューラルネットワーク(GNN)の統一最適化フレームワーク内で設計されたtextsfFair textsfMessage textsfPassing(FMP)を提案する。
FMPでは、アグリゲーションがまず隣人の情報を活用するために採用され、バイアス軽減ステップにより、人口集団ノードのプレゼンテーションセンタが明示的に統合される。
ノード分類タスクの実験により、提案されたFMPは、実世界の3つのデータセットの公平性と正確性の観点から、いくつかのベースラインを上回っていることが示された。
論文 参考訳(メタデータ) (2023-12-19T18:00:15Z) - GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
本稿では,この新たな問題設定の数学的定義を紹介する。
一つのグラフ共有構造学習者と複数のグラフ固有GNNを協調する一般的なフレームワークを考案する。
十分に訓練された構造学習者は、微調整なしで、目に見えない対象グラフの適応的な構造を直接生成することができる。
論文 参考訳(メタデータ) (2023-06-20T03:33:22Z) - SE-GSL: A General and Effective Graph Structure Learning Framework
through Structural Entropy Optimization [67.28453445927825]
グラフニューラルネットワーク(GNN)は、構造的データ学習のデファクトソリューションである。
既存のグラフ構造学習(GSL)フレームワークには、堅牢性と解釈性がない。
本稿では、構造エントロピーと符号化木に抽象化されたグラフ階層を通して、一般的なGSLフレームワークSE-GSLを提案する。
論文 参考訳(メタデータ) (2023-03-17T05:20:24Z) - Graph Contrastive Learning for Skeleton-based Action Recognition [85.86820157810213]
骨格に基づく行動認識のためのグラフコントラスト学習フレームワークを提案する。
SkeletonGCLは、グラフをクラス識別に強制することで、シーケンス間のグラフ学習を関連付ける。
SkeletonGCLは新しいトレーニングパラダイムを確立し、現在のグラフ畳み込みネットワークにシームレスに組み込むことができる。
論文 参考訳(メタデータ) (2023-01-26T02:09:16Z) - Neighborhood Homophily-based Graph Convolutional Network [4.511171093050241]
グラフニューラルネットワーク(GNN)は、グラフ指向のタスクにおいて強力であることが証明されている。
多くの実世界のグラフは異性を持ち、古典的なGNNのホモフィリーな仮定に挑戦する。
最近の研究では、ホモフィリーを特徴付ける新しい指標を提案するが、提案する指標とモデルの相関を考えることは稀である。
本稿ではまず,ノード近傍におけるラベルの複雑さや純度を測定するため,新しい指標であるNeighborhood Homophily(textitNH)を設計する。
論文 参考訳(メタデータ) (2023-01-24T07:56:44Z) - Structure-Preserving Graph Representation Learning [43.43429108503634]
本研究では,グラフの構造情報を完全にキャプチャする構造保存グラフ表現学習(SPGRL)手法を提案する。
具体的には、元のグラフの不確かさと誤情報を減らすために、k-Nearest Neighbor法による補完的なビューとして特徴グラフを構築する。
本手法は、半教師付きノード分類タスクにおいて非常に優れた性能を示し、グラフ構造やノード特徴に対するノイズ摂動下での堅牢性に優れる。
論文 参考訳(メタデータ) (2022-09-02T02:49:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。