論文の概要: Hybrid Classical-Quantum Simulation of MaxCut using QAOA-in-QAOA
- arxiv url: http://arxiv.org/abs/2406.17383v1
- Date: Tue, 25 Jun 2024 09:02:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 15:01:42.300205
- Title: Hybrid Classical-Quantum Simulation of MaxCut using QAOA-in-QAOA
- Title(参考訳): QAOA-in-QAOAを用いたMaxCutのハイブリッド古典量子シミュレーション
- Authors: Aniello Esposito, Tamuz Danzig,
- Abstract要約: そこで本研究では,MaxCut問題のスケーラブルな解に対するQAOA2法の実装について述べる。
The limit of the Goemans-Williamson (GW) algorithm as a purely classical alternative to QAOA。
最大33量子ビットの大規模シミュレーションの結果は、ある場合におけるQAOAの利点と実装の効率性を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Quantum approximate optimization algorithm (QAOA) is a leading hybrid classical-quantum algorithm for solving complex combinatorial optimization problems. QAOA-in-QAOA (QAOA^2) uses a divide-and-conquer heuristic to solve large-scale Maximum Cut (MaxCut) problems, where many subgraph problems can be solved in parallel. In this work, an implementation of the QAOA2 method for the scalable solution of the MaxCut problem is presented, based on the Classiq platform. The framework is executed on an HPE-Cray EX supercomputer by means of the Message Passing Interface (MPI) and the SLURM workload manager. The limits of the Goemans-Williamson (GW) algorithm as a purely classical alternative to QAOA are investigated to understand if QAOA^2 could benefit from solving certain sub-graphs classically. Results from large-scale simulations of up to 33 qubits are presented, showing the advantage of QAOA in certain cases and the efficiency of the implementation, as well as the adequacy of the workflow in the preparation of real quantum devices. For the considered graphs, the best choice for the sub-graphs does not significantly improve results and is still outperformed by GW.
- Abstract(参考訳): 量子近似最適化アルゴリズム(QAOA)は、複雑な組合せ最適化問題の解法である。
QAOA-in-QAOA (QAOA^2) は、多くのサブグラフ問題を並列に解くことができる大規模最大カット(MaxCut)問題を解くために、分割とコンカリストのヒューリスティックを使用する。
そこで本研究では,Classiq プラットフォームに基づく MaxCut 問題のスケーラブルな解に対する QAOA2 法の実装について述べる。
このフレームワークは、MPI(Message Passing Interface)とSLURMのワークロードマネージャを用いて、HPE-Cray EXスーパーコンピュータ上で実行される。
QAOA^2が古典的な部分グラフを解く利点があるかどうかを理解するために、QAOAの純粋に古典的な代替品としてのゴーマン・ウィリアムソン(GW)アルゴリズムの限界について検討した。
最大33量子ビットの大規模シミュレーションの結果は、特定のケースにおけるQAOAの利点と実装の効率、および実際の量子デバイスの準備におけるワークフローの妥当性を示す。
検討されたグラフに対して、サブグラフの最良の選択は、結果を著しく改善するものではなく、GWよりも優れています。
関連論文リスト
- MG-Net: Learn to Customize QAOA with Circuit Depth Awareness [51.78425545377329]
量子近似最適化アルゴリズム(QAOA)とその変種は、最適化問題に対処する大きな可能性を示している。
良好な性能を実現するために必要な回路深度は問題固有であり、しばしば現在の量子デバイスの最大容量を超える。
ミキサジェネレータネットワーク (MG-Net) は, 最適ミキサハミルトニアンを動的に定式化するための統合ディープラーニングフレームワークである。
論文 参考訳(メタデータ) (2024-09-27T12:28:18Z) - Evidence of Scaling Advantage for the Quantum Approximate Optimization Algorithm on a Classically Intractable Problem [8.738180371389097]
量子近似最適化アルゴリズム(QAOA)は、量子コンピュータにおける最適化問題を解くための主要な候補アルゴリズムである。
本稿では,低自己相関二項列(LABS)問題に対するQAOAの広範な数値的な検討を行う。
パラメータが固定されたQAOAのランタイムは、分岐とバウンドの解法よりも良くスケールする。
論文 参考訳(メタデータ) (2023-08-04T14:17:21Z) - An Expressive Ansatz for Low-Depth Quantum Approximate Optimisation [0.23999111269325263]
量子近似最適化アルゴリズム(QAOA)は、最適化問題を解くために用いられるハイブリッド量子古典アルゴリズムである。
QAOAはNISQデバイスに実装できるが、物理的制限は回路深さを制限し、性能を低下させる。
この研究は、より古典的なパラメータをアンサッツに割り当て、低深さでの性能を改善するeXpressive QAOA (XQAOA)を導入している。
論文 参考訳(メタデータ) (2023-02-09T07:47:06Z) - QAOA-in-QAOA: solving large-scale MaxCut problems on small quantum
machines [81.4597482536073]
量子近似最適化アルゴリズム(QAOAs)は、量子マシンのパワーを利用し、断熱進化の精神を継承する。
量子マシンを用いて任意の大規模MaxCut問題を解くためにQAOA-in-QAOA(textQAOA2$)を提案する。
提案手法は,大規模最適化問題におけるQAOAsの能力を高めるために,他の高度な戦略にシームレスに組み込むことができる。
論文 参考訳(メタデータ) (2022-05-24T03:49:10Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
我々は、様々なレベルの接続性を持つハードウェアアーキテクチャのための最適化回路により、期待されるリソース要求のスケーリングを定量化する。
問題の大きさと問題グラフの次数で指数関数的に増大する。
これらの問題は、ハードウェア接続性の向上や、より少ない回路層で高い性能を達成するQAOAの変更によって緩和される可能性がある。
論文 参考訳(メタデータ) (2022-01-06T21:02:30Z) - Quantum Approximate Optimization Algorithm Based Maximum Likelihood
Detection [80.28858481461418]
量子技術の最近の進歩は、ノイズの多い中間スケール量子(NISQ)デバイスへの道を開く。
量子技術の最近の進歩は、ノイズの多い中間スケール量子(NISQ)デバイスへの道を開く。
論文 参考訳(メタデータ) (2021-07-11T10:56:24Z) - Empirical performance bounds for quantum approximate optimization [0.27998963147546135]
パフォーマンスバウンダリの定量化は、QAOAが現実のアプリケーションの解決に有効である可能性についての洞察を提供する。
QAOA は、ほとんどのグラフに対して有界な Goemans-Williamson 近似比を超える。
得られたデータセットは、QAOAパフォーマンスに関する経験的バウンダリを確立するためのベンチマークとして提示される。
論文 参考訳(メタデータ) (2021-02-12T23:12:09Z) - Hybrid quantum-classical algorithms for approximate graph coloring [65.62256987706128]
量子近似最適化アルゴリズム(RQAOA)をMAX-$k$-CUTに適用する方法を示す。
任意のグラフに対するレベル-$1$QAOAとレベル-$1$RQAOAをシミュレートした,効率的な古典的シミュレーションアルゴリズムを構築する。
論文 参考訳(メタデータ) (2020-11-26T18:22:21Z) - Evaluation of QAOA based on the approximation ratio of individual
samples [0.0]
我々は、Max-Cut問題に適用されたQAOAの性能をシミュレートし、いくつかの古典的代替品と比較する。
QAOA計算複雑性理論のガイダンスが進化しているため、量子的優位性を求めるためのフレームワークを利用する。
論文 参考訳(メタデータ) (2020-06-08T18:00:18Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。