論文の概要: Learning to Ask Informative Questions: Enhancing LLMs with Preference Optimization and Expected Information Gain
- arxiv url: http://arxiv.org/abs/2406.17453v2
- Date: Thu, 03 Oct 2024 20:26:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-07 18:20:07.770417
- Title: Learning to Ask Informative Questions: Enhancing LLMs with Preference Optimization and Expected Information Gain
- Title(参考訳): インフォーマティブな質問に対する学習: 優先最適化によるLLMの強化と期待される情報獲得
- Authors: Davide Mazzaccara, Alberto Testoni, Raffaella Bernardi,
- Abstract要約: 大型言語モデル (LLM) は、しばしば情報的質問を生成するのによく機能する。
そこで本研究では,20種類のゲーム対話におけるLLM生成質問の情報性向上手法を提案する。
- 参考スコア(独自算出の注目度): 5.229155918347321
- License:
- Abstract: Questions are essential tools for acquiring the necessary information to complete information-seeking tasks. However, large language models (LLMs), especially open-source models, often perform poorly in generating informative questions, as measured by expected information gain (EIG). In this paper, we propose a method to enhance the informativeness of LLM-generated questions in 20-question game dialogues. We sample multiple questions from the same model (LLAMA 2-CHAT 7B) for each game and create pairs of low-EIG and high-EIG questions to apply a Direct Preference Optimization (DPO) algorithm. Our results show that this method produces more effective questions (in terms of EIG), even in domains different from those used to train the DPO model.
- Abstract(参考訳): 質問は、情報検索タスクを完了するために必要な情報を取得するために必要なツールである。
しかし、特にオープンソースモデルである大規模言語モデル(LLM)は、期待される情報ゲイン(EIG)によって測定されるように、情報的質問を生成するのによく機能しない。
本論文では,20項目のゲーム対話において,LLM生成した質問に対する情報伝達性を高める手法を提案する。
ゲーム毎に同じモデル(LLAMA 2-CHAT 7B)から複数の質問をサンプリングし、DPOアルゴリズムを適用するために低EIGと高EIGの2組のペアを作成する。
提案手法は,DPOモデルをトレーニングするドメインと異なる領域であっても,より効果的な質問(EIG)を生成することを示す。
関連論文リスト
- Benchmarking Multimodal Retrieval Augmented Generation with Dynamic VQA Dataset and Self-adaptive Planning Agent [102.31558123570437]
マルチモーダル大規模言語モデル(MLLM)に固有の「ハロシン化」問題を緩和する上で,mRAG(Multimodal Retrieval Augmented Generation)が重要な役割を果たしている。
マルチモーダル検索のための自己適応型計画エージェントOmniSearchを提案する。
論文 参考訳(メタデータ) (2024-11-05T09:27:21Z) - Aggregated Knowledge Model: Enhancing Domain-Specific QA with Fine-Tuned and Retrieval-Augmented Generation Models [0.0]
本稿では,クローズドドメイン質問応答システム(QA)の新たなアプローチを提案する。
ローレンス・バークレー国立研究所(LBL)科学情報技術(ScienceIT)ドメインの特定のニーズに焦点を当てている。
論文 参考訳(メタデータ) (2024-10-24T00:49:46Z) - Multi-LLM QA with Embodied Exploration [55.581423861790945]
未知環境における質問応答におけるマルチエンボディードLEMエクスプローラ(MELE)の利用について検討する。
複数のLSMベースのエージェントが独立して家庭用環境に関する質問を探索し、回答する。
各問合せに対して1つの最終回答を生成するために,異なるアグリゲーション手法を解析する。
論文 参考訳(メタデータ) (2024-06-16T12:46:40Z) - CLARINET: Augmenting Language Models to Ask Clarification Questions for Retrieval [52.134133938779776]
CLARINETは,回答が正しい候補の確実性を最大化する質問を選択することで,情報的明確化を問うシステムである。
提案手法は,大規模言語モデル(LLM)を検索分布の条件付きで拡張し,各ターンで真の候補のランクを最大化する問題を生成する。
論文 参考訳(メタデータ) (2024-04-28T18:21:31Z) - Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs [60.40396361115776]
本稿では,スリムプロキシモデルを用いた大規模言語モデル (LLM) における知識不足を検知する新しい協調手法であるSlimPLMを提案する。
パラメータがはるかに少ないプロキシモデルを採用し、回答を回答としています。
ヒューリスティックな回答は、LLM内の既知の未知の知識と同様に、ユーザの質問に答えるために必要な知識を予測するのに使用される。
論文 参考訳(メタデータ) (2024-02-19T11:11:08Z) - Enhancing Large Language Model Performance To Answer Questions and
Extract Information More Accurately [2.1715455600756646]
大きな言語モデル(LLM)は質問に対する応答を生成する。
それらの効果は、答えの最適でない品質や、質問に対する正確な回答を提供するための失敗によってしばしば妨げられる。
これらの課題に対処するため、モデルを改善するためのフィードバックやサンプルを含む、微調整プロセスが採用されている。
論文 参考訳(メタデータ) (2024-01-27T00:18:07Z) - Context Matters: Pushing the Boundaries of Open-Ended Answer Generation with Graph-Structured Knowledge Context [4.1229332722825]
本稿では,知識グラフに基づく拡張と合わせて,グラフ駆動型コンテキスト検索を組み合わせた新しいフレームワークを提案する。
我々は,様々なパラメータサイズを持つ大規模言語モデル(LLM)の実験を行い,知識の基盤化能力を評価し,オープンな質問に対する回答の事実的正確性を決定する。
われわれの方法であるGraphContextGenは、テキストベースの検索システムよりも一貫して優れており、その堅牢性と多くのユースケースへの適応性を実証している。
論文 参考訳(メタデータ) (2024-01-23T11:25:34Z) - Enhancing Answer Selection in Community Question Answering with
Pre-trained and Large Language Models [0.9065034043031668]
まず,質問応答型クロスアテンションネットワーク(QAN)を提案する。
次に,大規模言語モデル(LLM)を用いて,知識拡張による回答選択を行う。
実験の結果、QANモデルが2つのデータセット、SemEval2015とSemEval 2017の最先端のパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-11-29T10:24:50Z) - FreshLLMs: Refreshing Large Language Models with Search Engine
Augmentation [92.43001160060376]
本研究では,現在の世界知識をテストする質問に答える文脈において,大規模言語モデル(LLM)の事実性について検討する。
多様な質問や回答のタイプを含む新しい動的QAベンチマークであるFreshQAを紹介する。
我々は,2モード評価法により,閉じたLLMとオープンソースのLLMの多種多様な配列をベンチマークし,その正しさと幻覚の両面を計測する。
これらの結果に触発されたFreshPromptは、FreshQA上でのLLMの性能を大幅に向上させる単純な数ショットプロンプトである。
論文 参考訳(メタデータ) (2023-10-05T00:04:12Z) - FOLLOWUPQG: Towards Information-Seeking Follow-up Question Generation [38.78216651059955]
実世界の情報検索フォローアップ質問生成(FQG)の課題について紹介する。
オープンエンド質問に対するRedditフレンドリーな説明を提供するフォーラムレイマンから収集した,3K以上の実世界のデータセット(初期質問,回答,フォローアップ質問)であるFOLLOWUPQGを構築した。
既存のデータセットとは対照的に、FOLLOWUPQGの質問は情報を求めるためにより多様な実用的戦略を使用し、高次認知能力も示している。
論文 参考訳(メタデータ) (2023-09-10T11:58:29Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
大規模言語モデル(LLM)は、ダウンストリームタスクの多くに対して、人間のような、流動的な応答を生成することができる。
本稿では,プラグ・アンド・プレイモジュールのセットでブラックボックスのLSMを増強するLSM-Augmenterシステムを提案する。
論文 参考訳(メタデータ) (2023-02-24T18:48:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。