Performative Debias with Fair-exposure Optimization Driven by Strategic Agents in Recommender Systems
- URL: http://arxiv.org/abs/2406.17475v1
- Date: Tue, 25 Jun 2024 11:41:50 GMT
- Title: Performative Debias with Fair-exposure Optimization Driven by Strategic Agents in Recommender Systems
- Authors: Zhichen Xiang, Hongke Zhao, Chuang Zhao, Ming He, Jianping Fan,
- Abstract summary: This paper develops a re-ranking approach in dynamic settings with fair-exposure optimization driven by strategic agents.
Joint objectives ensure the performance of recommendations while enhancing the visibility of tail items.
We have substantiated the effectiveness and dominance of the proposed method especially on unveiling the potential of tail items.
- Score: 12.913561033531249
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data bias, e.g., popularity impairs the dynamics of two-sided markets within recommender systems. This overshadows the less visible but potentially intriguing long-tail items that could capture user interest. Despite the abundance of research surrounding this issue, it still poses challenges and remains a hot topic in academic circles. Along this line, in this paper, we developed a re-ranking approach in dynamic settings with fair-exposure optimization driven by strategic agents. Designed for the producer side, the execution of agents assumes content creators can modify item features based on strategic incentives to maximize their exposure. This iterative process entails an end-to-end optimization, employing differentiable ranking operators that simultaneously target accuracy and fairness. Joint objectives ensure the performance of recommendations while enhancing the visibility of tail items. We also leveraged the performativity nature of predictions to illustrate how strategic learning influences content creators to shift towards fairness efficiently, thereby incentivizing features of tail items. Through comprehensive experiments on both public and industrial datasets, we have substantiated the effectiveness and dominance of the proposed method especially on unveiling the potential of tail items.
Related papers
- Unveiling User Satisfaction and Creator Productivity Trade-Offs in Recommendation Platforms [68.51708490104687]
We show that a purely relevance-driven policy with low exploration strength boosts short-term user satisfaction but undermines the long-term richness of the content pool.
Our findings reveal a fundamental trade-off between immediate user satisfaction and overall content production on platforms.
arXiv Detail & Related papers (2024-10-31T07:19:22Z) - FairDgcl: Fairness-aware Recommendation with Dynamic Graph Contrastive Learning [48.38344934125999]
We study how to implement high-quality data augmentation to improve recommendation fairness.
Specifically, we propose FairDgcl, a dynamic graph adversarial contrastive learning framework.
We show that FairDgcl can simultaneously generate enhanced representations that possess both fairness and accuracy.
arXiv Detail & Related papers (2024-10-23T04:43:03Z) - Learning Recommender Systems with Soft Target: A Decoupled Perspective [49.83787742587449]
We propose a novel decoupled soft label optimization framework to consider the objectives as two aspects by leveraging soft labels.
We present a sensible soft-label generation algorithm that models a label propagation algorithm to explore users' latent interests in unobserved feedback via neighbors.
arXiv Detail & Related papers (2024-10-09T04:20:15Z) - Fairness Vs. Personalization: Towards Equity in Epistemic Utility [2.050345881732981]
We explicate the inherent tension between personalization and conventional implementations of fairness.
We provide a mapping between goals and practical implementations and detail policy recommendations across key stakeholders.
arXiv Detail & Related papers (2023-09-05T18:19:57Z) - Managing multi-facet bias in collaborative filtering recommender systems [0.0]
Biased recommendations across groups of items can endanger the interests of item providers along with causing user dissatisfaction with the system.
This study aims to manage a new type of intersectional bias regarding the geographical origin and popularity of items in the output of state-of-the-art collaborative filtering recommender algorithms.
Extensive experiments on two real-world datasets of movies and books, enriched with the items' continents of production, show that the proposed algorithm strikes a reasonable balance between accuracy and both types of the mentioned biases.
arXiv Detail & Related papers (2023-02-21T10:06:01Z) - Meta-Wrapper: Differentiable Wrapping Operator for User Interest
Selection in CTR Prediction [97.99938802797377]
Click-through rate (CTR) prediction, whose goal is to predict the probability of the user to click on an item, has become increasingly significant in recommender systems.
Recent deep learning models with the ability to automatically extract the user interest from his/her behaviors have achieved great success.
We propose a novel approach under the framework of the wrapper method, which is named Meta-Wrapper.
arXiv Detail & Related papers (2022-06-28T03:28:15Z) - A Graph-based Approach for Mitigating Multi-sided Exposure Bias in
Recommender Systems [7.3129791870997085]
We introduce FairMatch, a graph-based algorithm that improves exposure fairness for items and suppliers.
A comprehensive set of experiments on two datasets and comparison with state-of-the-art baselines show that FairMatch, while significantly improves exposure fairness and aggregate diversity, maintains an acceptable level of relevance of the recommendations.
arXiv Detail & Related papers (2021-07-07T18:01:26Z) - Where is the Grass Greener? Revisiting Generalized Policy Iteration for
Offline Reinforcement Learning [81.15016852963676]
We re-implement state-of-the-art baselines in the offline RL regime under a fair, unified, and highly factorized framework.
We show that when a given baseline outperforms its competing counterparts on one end of the spectrum, it never does on the other end.
arXiv Detail & Related papers (2021-07-03T11:00:56Z) - Incentivizing Exploration with Selective Data Disclosure [70.11902902106014]
We propose and design recommendation systems that incentivize efficient exploration.
Agents arrive sequentially, choose actions and receive rewards, drawn from fixed but unknown action-specific distributions.
We attain optimal regret rate for exploration using a flexible frequentist behavioral model.
arXiv Detail & Related papers (2018-11-14T19:29:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.