Entropy-Based Decoding for Retrieval-Augmented Large Language Models
- URL: http://arxiv.org/abs/2406.17519v2
- Date: Mon, 17 Feb 2025 07:07:19 GMT
- Title: Entropy-Based Decoding for Retrieval-Augmented Large Language Models
- Authors: Zexuan Qiu, Zijing Ou, Bin Wu, Jingjing Li, Aiwei Liu, Irwin King,
- Abstract summary: Augmenting Large Language Models with retrieved external knowledge has proven effective for improving the factual accuracy of generated responses.
We introduce a novel, training-free decoding method guided by entropy considerations to mitigate this issue.
- Score: 43.93281157539377
- License:
- Abstract: Augmenting Large Language Models (LLMs) with retrieved external knowledge has proven effective for improving the factual accuracy of generated responses. Despite their success, retrieval-augmented LLMs still face the distractibility issue, where the generated responses are negatively influenced by noise from both external and internal knowledge sources. In this paper, we introduce a novel, training-free decoding method guided by entropy considerations to mitigate this issue. Our approach utilizes entropy-based document-parallel ensemble decoding to prioritize low-entropy distributions from retrieved documents, thereby enhancing the extraction of relevant information of context. Additionally, it incorporates a contrastive decoding mechanism that contrasts the obtained low-entropy ensemble distribution with the high-entropy distribution derived from the model's internal knowledge across layers, which ensures a greater emphasis on reliable external information. Extensive experiments on open-domain question answering datasets demonstrate the superiority of our method.
Related papers
- Oreo: A Plug-in Context Reconstructor to Enhance Retrieval-Augmented Generation [28.568010424711563]
Large Language Models (LLMs) remain vulnerable to hallucinations due to their limited parametric knowledge and lack of domain-specific expertise.
Retrieval-Augmented Generation (RAG) addresses this challenge by incorporating external document retrieval to augment the knowledge base of LLMs.
We introduce a compact, efficient, and pluggable module designed to refine external knowledge sources before feeding them to the generator.
arXiv Detail & Related papers (2025-02-18T16:38:39Z) - Context Awareness Gate For Retrieval Augmented Generation [2.749898166276854]
Retrieval Augmented Generation (RAG) has emerged as a widely adopted approach to mitigate the limitations of large language models (LLMs) in answering domain-specific questions.
Previous research has predominantly focused on improving the accuracy and quality of retrieved data chunks to enhance the overall performance of the generation pipeline.
We investigate the impact of retrieving irrelevant information in open-domain question answering, highlighting its significant detrimental effect on the quality of LLM outputs.
arXiv Detail & Related papers (2024-11-25T06:48:38Z) - DiffATR: Diffusion-based Generative Modeling for Audio-Text Retrieval [49.076590578101985]
We present a diffusion-based ATR framework (DiffATR) that generates joint distribution from noise.
Experiments on the AudioCaps and Clotho datasets with superior performances, verify the effectiveness of our approach.
arXiv Detail & Related papers (2024-09-16T06:33:26Z) - Towards Building a Robust Knowledge Intensive Question Answering Model with Large Language Models [4.4849006637642805]
Presence of noise and errors in retrieved information poses challenges to the robustness of LLMs.
To address the issue of model accuracy decline caused by noisy external information, we propose a data augmentation-based fine-tuning method.
We have conducted experiments on both existing LLMs and our approach, the results are evaluated by GPT-4.
arXiv Detail & Related papers (2024-09-09T07:32:30Z) - Neural Surface Reconstruction from Sparse Views Using Epipolar Geometry [4.659427498118277]
We present a novel approach, named EpiS, that incorporates Epipolar information into the reconstruction process.
Our method aggregates coarse information from the cost volume into Epipolar features extracted from multiple source views.
To address the information gaps in sparse conditions, we integrate depth information from monocular depth estimation using global and local regularization techniques.
arXiv Detail & Related papers (2024-06-06T17:47:48Z) - STEERING: Stein Information Directed Exploration for Model-Based
Reinforcement Learning [111.75423966239092]
We propose an exploration incentive in terms of the integral probability metric (IPM) between a current estimate of the transition model and the unknown optimal.
Based on KSD, we develop a novel algorithm algo: textbfSTEin information dirtextbfEcted exploration for model-based textbfReinforcement LearntextbfING.
arXiv Detail & Related papers (2023-01-28T00:49:28Z) - Causality-Aware Local Interpretable Model-Agnostic Explanations [7.412445894287709]
We propose a novel extension to a widely used local and model-agnostic explainer, which encodes explicit causal relationships within the data surrounding the instance being explained.
Our approach overcomes the original method in terms of faithfully replicating the black-box model's mechanism and the consistency and reliability of the generated explanations.
arXiv Detail & Related papers (2022-12-10T10:12:27Z) - Principled Knowledge Extrapolation with GANs [92.62635018136476]
We study counterfactual synthesis from a new perspective of knowledge extrapolation.
We show that an adversarial game with a closed-form discriminator can be used to address the knowledge extrapolation problem.
Our method enjoys both elegant theoretical guarantees and superior performance in many scenarios.
arXiv Detail & Related papers (2022-05-21T08:39:42Z) - Improving Long Tailed Document-Level Relation Extraction via Easy
Relation Augmentation and Contrastive Learning [66.83982926437547]
We argue that mitigating the long-tailed distribution problem is crucial for DocRE in the real-world scenario.
Motivated by the long-tailed distribution problem, we propose an Easy Relation Augmentation(ERA) method for improving DocRE.
arXiv Detail & Related papers (2022-05-21T06:15:11Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
We propose to explicitly teach the model to capture relevant contexts and entity types by supervising and augmenting intermediate steps (SAIS) for relation extraction.
Based on a broad spectrum of carefully designed tasks, our proposed SAIS method not only extracts relations of better quality due to more effective supervision, but also retrieves the corresponding supporting evidence more accurately.
arXiv Detail & Related papers (2021-09-24T17:37:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.