論文の概要: Tell Me Where You Are: Multimodal LLMs Meet Place Recognition
- arxiv url: http://arxiv.org/abs/2406.17520v1
- Date: Tue, 25 Jun 2024 12:59:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 14:32:18.388664
- Title: Tell Me Where You Are: Multimodal LLMs Meet Place Recognition
- Title(参考訳): 場所を教えてくれ:マルチモーダルのLLMは場所認識と出会う
- Authors: Zonglin Lyu, Juexiao Zhang, Mingxuan Lu, Yiming Li, Chen Feng,
- Abstract要約: 視覚的位置認識(VPR)にマルチモーダル大言語モデル(MLLM)を導入する。
我々のキーとなる設計は、視覚に基づく検索を用いて複数の候補を提案し、言語に基づく推論を利用して最終決定のために各候補を慎重に検査することである。
3つのデータセットから得られた結果から,VFMの汎用的視覚特徴とMLLMの推論能力の統合が,すでに有効な位置認識ソリューションを提供していることが示唆された。
- 参考スコア(独自算出の注目度): 11.421492098416538
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) exhibit a variety of promising capabilities in robotics, including long-horizon planning and commonsense reasoning. However, their performance in place recognition is still underexplored. In this work, we introduce multimodal LLMs (MLLMs) to visual place recognition (VPR), where a robot must localize itself using visual observations. Our key design is to use vision-based retrieval to propose several candidates and then leverage language-based reasoning to carefully inspect each candidate for a final decision. Specifically, we leverage the robust visual features produced by off-the-shelf vision foundation models (VFMs) to obtain several candidate locations. We then prompt an MLLM to describe the differences between the current observation and each candidate in a pairwise manner, and reason about the best candidate based on these descriptions. Our results on three datasets demonstrate that integrating the general-purpose visual features from VFMs with the reasoning capabilities of MLLMs already provides an effective place recognition solution, without any VPR-specific supervised training. We believe our work can inspire new possibilities for applying and designing foundation models, i.e., VFMs, LLMs, and MLLMs, to enhance the localization and navigation of mobile robots.
- Abstract(参考訳): 大型言語モデル(LLM)は、長い水平計画や常識推論など、ロボット工学において様々な有望な能力を示す。
しかし、位置認識における彼らの業績はまだ未定である。
本研究では,視覚的位置認識(VPR)にMLLM(Multimodal LLM)を導入する。
我々のキーとなる設計は、視覚に基づく検索を用いて、いくつかの候補を提案し、言語に基づく推論を利用して、最終決定のために各候補を慎重に検査することである。
具体的には、市販のビジョンファウンデーションモデル(VFM)が生み出すロバストな視覚的特徴を活用して、いくつかの候補位置を求める。
次に、MLLMに対して、現在の観測結果と各候補との差異を相互に記述し、これらの記述に基づいて最適な候補を推論するように促す。
MLLMの推論能力とVFMの汎用的な視覚的特徴を統合することで,VPR固有の教師付きトレーニングを必要とせず,効果的な位置認識ソリューションがすでに実現されていることを,3つのデータセットで示している。
我々は,VFM,LLM,MLLMといった基礎モデルの適用と設計に新たな可能性をもたらし,移動ロボットのローカライゼーションとナビゲーションを強化することができると信じている。
関連論文リスト
- OLA-VLM: Elevating Visual Perception in Multimodal LLMs with Auxiliary Embedding Distillation [95.78870389271832]
現代のMLLMを開発するための標準的な慣行は、視覚エンコーダ(s)からLLMに特徴を供給し、自然言語を監督する訓練を行うことである。
目的とする視覚表現の集合からLLMの隠れ表現に知識を抽出する最初の手法であるOLA-VLMを提案する。
OLA-VLMは様々なベンチマークで平均マージンを2.5%向上させ,CV-BenchのDepthタスクでは8.7%向上した。
論文 参考訳(メタデータ) (2024-12-12T18:55:18Z) - Enhancing Perception Capabilities of Multimodal LLMs with Training-Free Fusion [40.56646959926701]
マルチモーダルLLM (Multimodal LLMs) は、視覚エンコーダと言語モデルとの整合による視覚能力を備えた言語モデルである。
MLLMの視覚知覚を高める既存の方法は、しばしばより強力な視覚エンコーダを設計する。
市販のMLLMから複数の視覚エンコーダを効率的に活用する新しい統合フレームワークであるVisionFuseを紹介する。
論文 参考訳(メタデータ) (2024-12-02T09:02:28Z) - MC-Bench: A Benchmark for Multi-Context Visual Grounding in the Era of MLLMs [61.56904387052982]
本稿では,マルチコンテキストの視覚的グラウンド化という新しい視覚的グラウンド化タスクを提案する。
オープンなテキストプロンプトに基づいて、複数の画像にまたがる関心のインスタンスをローカライズすることを目的としている。
我々は20以上の最先端MLLMと基盤モデルをベンチマークし、潜在的にマルチコンテキストの視覚的グラウンド化機能を有する。
論文 参考訳(メタデータ) (2024-10-16T07:52:57Z) - A Survey on Benchmarks of Multimodal Large Language Models [65.87641718350639]
本稿では,Multimodal Large Language Models (MLLM) のベンチマークと評価について概説する。
本研究では,(1)知覚と理解,(2)認知と推論,(3)特定のドメイン,(4)キー能力,(5)他のモダリティに着目した。
我々のキーとなる主張は、MLLMの開発をより良いものにするための重要な規律として評価されるべきである、ということである。
論文 参考訳(メタデータ) (2024-08-16T09:52:02Z) - Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs [61.143381152739046]
視覚中心のアプローチで設計したマルチモーダルLLM(MLLM)のファミリーであるCambrian-1を紹介する。
本研究は,様々な視覚表現を評価するためのインタフェースとして,LLMとビジュアルインストラクションチューニングを用いた。
モデルウェイト、コード、サポートツール、データセット、詳細なインストラクションチューニングと評価のレシピを提供しています。
論文 参考訳(メタデータ) (2024-06-24T17:59:42Z) - Draw-and-Understand: Leveraging Visual Prompts to Enable MLLMs to Comprehend What You Want [58.091825321168514]
我々は、Draw-and-Understandプロジェクト、新しいモデル、マルチドメインデータセット、ビジュアルプロンプトのための挑戦的なベンチマークを紹介する。
具体的には、視覚エンコーダ、視覚プロンプトエンコーダ、LLMを接続する、エンド・ツー・エンドのマルチモーダル大規模言語モデル(MLLM)を提案する。
MLLMの視覚的プロンプト研究を進めるために,MDVP-DataとMDVP-Benchを紹介する。
論文 参考訳(メタデータ) (2024-03-29T16:26:20Z) - Exploring the Frontier of Vision-Language Models: A Survey of Current Methodologies and Future Directions [11.786387517781328]
VLM(Vision-Language Models)は、画像キャプションや視覚的質問応答といった複雑なタスクに対処できる高度なモデルである。
我々の分類では、VLMを視覚言語理解専用のモデル、マルチモーダル入力を処理するモデル、マルチモーダル入力とアウトプットの両方を受け付け、生成するモデルという3つのカテゴリに分類する。
我々は各モデルを慎重に識別し、基礎となるアーキテクチャ、データソースのトレーニング、および可能な限りの強度と限界を広範囲に分析する。
論文 参考訳(メタデータ) (2024-02-20T18:57:34Z) - Eyes Wide Shut? Exploring the Visual Shortcomings of Multimodal LLMs [50.77984109941538]
近年のマルチモーダル LLM の視覚能力は, いまだに系統的な欠点を呈している。
CLIP-blind pairs'(CLIP-blind pairs)を識別する。
様々なCLIPに基づく視覚・言語モデルの評価を行い、CLIPモデルに挑戦する視覚パターンとマルチモーダルLLMの問題との間に顕著な相関関係を見出した。
論文 参考訳(メタデータ) (2024-01-11T18:58:36Z) - V*: Guided Visual Search as a Core Mechanism in Multimodal LLMs [34.211455081027964]
V*は、LLMの世界知識を利用して効率的なビジュアルクエリを行うビジュアルサーチ機構である。
本研究は,マルチモーダルシステムに視覚検索機能を組み込むことの必要性を強調した。
論文 参考訳(メタデータ) (2023-12-21T18:55:06Z) - VCoder: Versatile Vision Encoders for Multimodal Large Language Models [46.95488342139727]
MLLM(Multimodal Large Language Models)は近年,視覚言語タスクにおける優れたパフォーマンスを実現している。
しかし、ある画像内のエンティティを識別またはカウントするよう促された場合、既存のMLLMシステムは失敗する。
We propose using Versatile vision enCoders (VCoder) as perception eyes for Multimodal LLMs。
論文 参考訳(メタデータ) (2023-12-21T18:49:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。