Accelerated creation of NOON states with ultracold atoms via counterdiabatic driving
- URL: http://arxiv.org/abs/2406.17545v3
- Date: Tue, 16 Jul 2024 15:39:16 GMT
- Title: Accelerated creation of NOON states with ultracold atoms via counterdiabatic driving
- Authors: Simon Dengis, Sandro Wimberger, Peter Schlagheck,
- Abstract summary: A quantum control protocol is proposed for the creation of NOON states with $N$ ultracold bosonic atoms on two modes.
This state can be prepared by using a third mode where all bosons are initially placed and which is symmetrically coupled to the two other modes.
tuning the energy of this third mode across the energy level of the other modes allows the adiabatic creation of the NOON state.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A quantum control protocol is proposed for the creation of NOON states with $N$ ultracold bosonic atoms on two modes, corresponding to the coherent superposition $\vert N,0\rangle + \vert 0,N\rangle$. This state can be prepared by using a third mode where all bosons are initially placed and which is symmetrically coupled to the two other modes. Tuning the energy of this third mode across the energy level of the other modes allows the adiabatic creation of the NOON state. While this process normally takes too much time to be of practical usefulness, due to the smallness of the involved spectral gap, it can be drastically boosted through counterdiabatic driving which allows for efficient gap engineering. We demonstrate that this process can be implemented in terms of static parameter adaptations that are experimentally feasible with ultracold quantum gases. Gain factors in the required protocol speed are obtained that increase exponentially with the number of involved atoms and thus counterbalance the exponentially slow collective tunneling process underlying this adiabatic transition.
Related papers
- Measurement-Induced Transmon Ionization [69.65384453064829]
We develop a comprehensive framework which provides a physical picture of the origin of transmon ionization.
This framework identifies the multiphoton resonances responsible for transmon ionization.
It also allows one to efficiently compute numerical estimates of the photon number threshold for ionization.
arXiv Detail & Related papers (2024-02-09T18:46:50Z) - Shortcut-to-adiabaticity for coupled harmonic oscillators [0.0]
Shortcuts to adiabaticity methods allow to obtain desirable states of adiabatic dynamics.
Problem of considering this technique for two-coupled bosonic modes is addressed.
Problem of considering this technique for two-coupled bosonic modes is addressed.
arXiv Detail & Related papers (2023-10-14T12:58:59Z) - Proposal of ensemble qubits with two-atom decay [2.5900317472963152]
We propose and analyze a novel approach to implement ensemble qubits.
The required anharmonicity is provided by a simultaneous decay of two atoms.
For an atomic ensemble, the two-atom decay generates and stabilizes a 2D quantum manifold.
arXiv Detail & Related papers (2023-02-14T01:51:50Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Creating triple-NOON states with ultracold atoms via chaos-assisted
tunneling [0.0]
Triple-NOON states are superpositions of the form $ei varphi_1 |N,0,N,0rangle + ei varphi_3 |0,N,0rangle$ involving $N$ bosonic quanta distributed over three modes.
We show how such highly entangled states can be generated with interacting ultracold bosonic atoms in a symmetric three-site lattice.
arXiv Detail & Related papers (2022-02-11T13:14:21Z) - Accelerated adiabatic passage in cavity magnomechanics [0.0]
Cavity magnomechanics provides a readily-controllable hybrid system, that consisted of cavity mode, magnon mode, and phonon mode, for quantum state manipulation.
We propose two accelerated adiabatic-passage protocols based on the counterdiabatic Hamiltonian for transitionless quantum driving.
arXiv Detail & Related papers (2022-01-29T09:24:34Z) - Pulsed multireservoir engineering for a trapped ion with applications to
state synthesis and quantum Otto cycles [68.8204255655161]
Reservoir engineering is a remarkable task that takes dissipation and decoherence as tools rather than impediments.
We develop a collisional model to implement reservoir engineering for the one-dimensional harmonic motion of a trapped ion.
Having multiple internal levels, we show that multiple reservoirs can be engineered, allowing for more efficient synthesis of well-known non-classical states of motion.
arXiv Detail & Related papers (2021-11-26T08:32:39Z) - Superposition of two-mode squeezed states for quantum information
processing and quantum sensing [55.41644538483948]
We investigate superpositions of two-mode squeezed states (TMSSs)
TMSSs have potential applications to quantum information processing and quantum sensing.
arXiv Detail & Related papers (2021-02-01T18:09:01Z) - Deterministic single-atom source of quasi-superradiant $N$-photon pulses [62.997667081978825]
Scheme operates with laser and cavity fields detuned from the atomic transition by much more than the excited-state hyperfine splitting.
This enables reduction of the dynamics to that of a simple, cavity-damped Tavis-Cummings model with the collective spin determined by the total angular momentum of the ground hyperfine level.
arXiv Detail & Related papers (2020-12-01T03:55:27Z) - NOON states with ultracold bosonic atoms via resonance- and
chaos-assisted tunneling [0.0]
We theoretically investigate the generation of microscopic atomic NOON states, corresponding to the coherent |N,0> + |0,N> superposition with N 5 particles.
We show that a periodic driving of the double well with suitably tuned amplitude and frequency parameters allows one to substantially boost this tunneling process without altering its collective character.
arXiv Detail & Related papers (2020-08-27T14:34:25Z) - Engineering multipartite entangled states in doubly pumped parametric
down-conversion processes [68.8204255655161]
We investigate the quantum state generated by optical parametric down-conversion in a $chi(2) $ medium driven by two modes.
The analysis shows the emergence of multipartite, namely 3- or 4-partite, entangled states in a subset of the modes generated by the process.
arXiv Detail & Related papers (2020-07-23T13:53:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.