論文の概要: Variance Reduction for the Independent Metropolis Sampler
- arxiv url: http://arxiv.org/abs/2406.17699v2
- Date: Tue, 15 Oct 2024 22:05:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:38:16.289570
- Title: Variance Reduction for the Independent Metropolis Sampler
- Title(参考訳): 独立型メトロポリスサンプリング器のばらつき低減
- Authors: Siran Liu, Petros Dellaportas, Michalis K. Titsias,
- Abstract要約: 我々は、$pi$がKL分散の下で別の密度$q$に十分近い場合、$pi$からサンプルを得る独立したサンプリング器は、$pi$からサンプリングするi.d.よりも小さな分散を達成することを証明した。
提案手法は,KLの目標との偏差が低減されるように,提案密度に適応する適応型独立メトロポリスアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 11.074080383657453
- License:
- Abstract: Assume that we would like to estimate the expected value of a function $F$ with respect to an intractable density $\pi$, which is specified up to some unknown normalising constant. We prove that if $\pi$ is close enough under KL divergence to another density $q$, an independent Metropolis sampler estimator that obtains samples from $\pi$ with proposal density $q$, enriched with a variance reduction computational strategy based on control variates, achieves smaller asymptotic variance than i.i.d.\ sampling from $\pi$. The control variates construction requires no extra computational effort but assumes that the expected value of $F$ under $q$ is analytically available. We illustrate this result by calculating the marginal likelihood in a linear regression model with prior-likelihood conflict and a non-conjugate prior. Furthermore, we propose an adaptive independent Metropolis algorithm that adapts the proposal density such that its KL divergence with the target is being reduced. We demonstrate its applicability in a Bayesian logistic and Gaussian process regression problems and we rigorously justify our asymptotic arguments under easily verifiable and essentially minimal conditions.
- Abstract(参考訳): 函数の期待値$F$を、ある未知の正規化定数まで指定した難解密度$\pi$に対して推定したいと仮定する。
提案密度$q$で$\pi$からサンプルを得る独立メトロポリスサンプル推定器である$q$は、制御変数に基づく分散還元計算戦略に富み、i.d.\サンプルから$q$より小さな漸近分散が得られることを証明している。
制御変数の構成は余分な計算作業を必要としないが、$$$q$以下の期待値が解析的に利用可能であると仮定する。
本研究は, 線形回帰モデルにおいて, 衝突前と非共役前との差分確率を計算し, この結果について述べる。
さらに、ターゲットとのKLの発散が減少するように、提案密度に適応する適応独立メトロポリスアルゴリズムを提案する。
ベイズ的ロジスティックおよびガウス的プロセス回帰問題に適用可能性を示し、容易に検証可能で本質的に最小限の条件下で漸近的議論を厳格に正当化する。
関連論文リスト
- Computational-Statistical Gaps for Improper Learning in Sparse Linear Regression [4.396860522241307]
疎線形回帰の効率的な学習アルゴリズムは, 負のスパイクを持つスパースPCA問題を解くのに有効であることを示す。
我々は,低次および統計的クエリの低い境界を減らしたスパース問題に対して補う。
論文 参考訳(メタデータ) (2024-02-21T19:55:01Z) - Nearest Neighbor Sampling for Covariate Shift Adaptation [7.940293148084844]
重みを推定しない新しい共変量シフト適応法を提案する。
基本的な考え方は、ソースデータセットの$k$-nearestの隣人によってラベル付けされたラベル付けされていないターゲットデータを直接扱うことだ。
実験の結果, 走行時間を大幅に短縮できることがわかった。
論文 参考訳(メタデータ) (2023-12-15T17:28:09Z) - Towards Faster Non-Asymptotic Convergence for Diffusion-Based Generative
Models [49.81937966106691]
我々は拡散モデルのデータ生成過程を理解するための非漸近理論のスイートを開発する。
従来の研究とは対照的に,本理論は基本的だが多目的な非漸近的アプローチに基づいて開発されている。
論文 参考訳(メタデータ) (2023-06-15T16:30:08Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
縮退した線形マルコフ+デルタ決定における最適同定問題について, 生成モデルに基づく固定信頼度設定における検討を行った。
複雑な非最適化プログラムの解としての下位境界は、そのようなアルゴリズムを考案する出発点として用いられる。
論文 参考訳(メタデータ) (2022-08-11T04:12:50Z) - KL-Entropy-Regularized RL with a Generative Model is Minimax Optimal [70.15267479220691]
モデル強化学習のサンプル複雑性を,生成的分散自由モデルを用いて検討・解析する。
我々の分析は、$varepsilon$が十分小さい場合、$varepsilon$-optimal Policyを見つけるのが、ほぼ最小の最適化であることを示している。
論文 参考訳(メタデータ) (2022-05-27T19:39:24Z) - The Sample Complexity of Robust Covariance Testing [56.98280399449707]
i. i. d.
形式 $Z = (1-epsilon) X + epsilon B$ の分布からのサンプル。ここで $X$ はゼロ平均で未知の共分散である Gaussian $mathcalN(0, Sigma)$ である。
汚染がない場合、事前の研究は、$O(d)$サンプルを使用するこの仮説テストタスクの単純なテスターを与えた。
サンプル複雑性の上限が $omega(d2)$ for $epsilon$ an arbitrarily small constant and $gamma であることを証明します。
論文 参考訳(メタデータ) (2020-12-31T18:24:41Z) - Outlier-robust sparse/low-rank least-squares regression and robust
matrix completion [1.0878040851637998]
ヘテロジニアス雑音を伴う統計的学習フレームワークにおける高次元最小二乗回帰について検討する。
また, 製品プロセスの新たな応用に基づいて, 行列分解を伴う新しいトレーサリグレス理論を提案する。
論文 参考訳(メタデータ) (2020-12-12T07:42:47Z) - Optimal Sub-Gaussian Mean Estimation in $\mathbb{R}$ [5.457150493905064]
ガウス下収束を考慮した新しい推定器を提案する。
我々の推定器はその分散に関する事前の知識を必要としない。
我々の推定器の構成と分析は、他の問題に一般化可能なフレームワークを提供する。
論文 参考訳(メタデータ) (2020-11-17T02:47:24Z) - Computationally and Statistically Efficient Truncated Regression [36.3677715543994]
計算的かつ統計的に効率的な線形回帰の古典的問題に対する推定器を提供する。
提案手法では, トランキャット標本の負の対数類似度に代わることなく, プロジェクテッド・Descent Gradient (PSGD) を用いて推定する。
本稿では,SGDが単一層ニューラルネットワークの雑音活性化関数のパラメータを学習することを示す。
論文 参考訳(メタデータ) (2020-10-22T19:31:30Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
学習者が生成モデル$Y = langle X,w* rangle + epsilon$から$n$のサンプルにアクセスできるような高次元頑健な線形回帰問題について検討する。
i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance, (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
論文 参考訳(メタデータ) (2020-07-16T06:44:44Z) - Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and
Variance Reduction [63.41789556777387]
非同期Q-ラーニングはマルコフ決定過程(MDP)の最適行動値関数(またはQ-関数)を学習することを目的としている。
Q-関数の入出力$varepsilon$-正確な推定に必要なサンプルの数は、少なくとも$frac1mu_min (1-gamma)5varepsilon2+ fract_mixmu_min (1-gamma)$の順である。
論文 参考訳(メタデータ) (2020-06-04T17:51:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。