論文の概要: Deep Learning Approaches for Detecting Adversarial Cyberbullying and Hate Speech in Social Networks
- arxiv url: http://arxiv.org/abs/2406.17793v1
- Date: Thu, 30 May 2024 21:44:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 06:21:45.753154
- Title: Deep Learning Approaches for Detecting Adversarial Cyberbullying and Hate Speech in Social Networks
- Title(参考訳): ソーシャルネットワークにおける敵対的サイバーいじめ・ヘイトスピーチ検出のための深層学習手法
- Authors: Sylvia Worlali Azumah, Nelly Elsayed, Zag ElSayed, Murat Ozer, Amanda La Guardia,
- Abstract要約: 本稿では、ソーシャルネットワークサイトテキストデータ中の敵対的攻撃コンテンツにおけるサイバーいじめの検出、特にヘイトスピーチを強調することに焦点を当てる。
100の固定エポックを持つLSTMモデルは、高い精度、精度、リコール、F1スコア、AUC-ROCスコアが87.57%、88.73%、88.15%、91%の顕著な性能を示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cyberbullying is a significant concern intricately linked to technology that can find resolution through technological means. Despite its prevalence, technology also provides solutions to mitigate cyberbullying. To address growing concerns regarding the adverse impact of cyberbullying on individuals' online experiences, various online platforms and researchers are actively adopting measures to enhance the safety of digital environments. While researchers persist in crafting detection models to counteract or minimize cyberbullying, malicious actors are deploying adversarial techniques to circumvent these detection methods. This paper focuses on detecting cyberbullying in adversarial attack content within social networking site text data, specifically emphasizing hate speech. Utilizing a deep learning-based approach with a correction algorithm, this paper yielded significant results. An LSTM model with a fixed epoch of 100 demonstrated remarkable performance, achieving high accuracy, precision, recall, F1-score, and AUC-ROC scores of 87.57%, 88.73%, 87.57%, 88.15%, and 91% respectively. Additionally, the LSTM model's performance surpassed that of previous studies.
- Abstract(参考訳): サイバブリングは、技術的手段によって解決できる技術と密接に結びついている重要な関心事である。
その流行にもかかわらず、テクノロジーはサイバーいじめを緩和するソリューションも提供する。
サイバーいじめが個人のオンライン体験に悪影響を及ぼすという懸念に対処するため、様々なオンラインプラットフォームや研究者がデジタル環境の安全性を高めるための対策を積極的に導入している。
研究者はサイバーいじめの防止や最小化のために検出モデルの作成を続けているが、悪意のあるアクターはこれらの検出方法を回避するために敵対的手法を展開している。
本稿では、ソーシャルネットワークサイトテキストデータ中の敵対的攻撃コンテンツにおけるサイバーいじめの検出、特にヘイトスピーチを強調することに焦点を当てる。
修正アルゴリズムを用いた深層学習に基づく手法を用いて,本論文は有意な結果を得た。
100の固定エポックを持つLSTMモデルは、高い精度、精度、リコール、F1スコア、AUC-ROCスコアが87.57%、88.73%、88.15%、91%の顕著な性能を示した。
さらに、LSTMモデルの性能は以前の研究を上回った。
関連論文リスト
- Model Inversion Attacks: A Survey of Approaches and Countermeasures [59.986922963781]
近年、新しいタイプのプライバシ攻撃であるモデル反転攻撃(MIA)は、トレーニングのためのプライベートデータの機密性を抽出することを目的としている。
この重要性にもかかわらず、総合的な概要とMIAに関する深い洞察を提供する体系的な研究が欠如している。
本調査は、攻撃と防御の両方において、最新のMIA手法を要約することを目的としている。
論文 参考訳(メタデータ) (2024-11-15T08:09:28Z) - Cyberbully and Online Harassment: Issues Associated with Digital Wellbeing [0.0]
本研究は, 多様な研究から経験的知見を合成し, 革新的技術介入がサイバーいじめの頻度の低減にいかに貢献するかを評価する。
本研究は,動的デジタルランドスケープに対応する適応戦略の必要性を強調し,これらの介入の有効性に焦点を当てた。
論文 参考訳(メタデータ) (2024-04-29T17:49:49Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - Deep Learning Based Cyberbullying Detection in Bangla Language [0.0]
本研究は,ベンガルのサイバーいじめを識別する深層学習戦略を実証する。
2層双方向長短期メモリ(Bi-LSTM)モデルが構築され、サイバーいじめを識別する。
論文 参考訳(メタデータ) (2024-01-07T04:58:59Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
マルウェア、スパム、侵入などのサイバー攻撃の爆発的な増加は、社会に深刻な影響をもたらした。
従来の機械学習(ML)ベースの手法は、サイバー脅威の検出に広く用いられているが、現実のサイバーエンティティ間の相関をモデル化することはほとんどない。
グラフマイニング技術の普及に伴い、サイバーエンティティ間の相関を捉え、高いパフォーマンスを達成するために、多くの研究者がこれらの手法を調査した。
論文 参考訳(メタデータ) (2023-04-02T08:43:03Z) - Cyberbullying in Text Content Detection: An Analytical Review [0.0]
オンラインソーシャルネットワークは、自殺、摂食障害、サイバー犯罪、強制行動、不安、抑うつといった生命を脅かす状況へのユーザーの露出を増大させる。
サイバーいじめの問題を解決するため、既存の文献の多くは、要因を特定し、サイバーいじめに関連するテキスト的要因を理解するためのアプローチの開発に重点を置いている。
本稿では,サイバーバブル検出の理解を深めるために,総合的な文献レビューを行う。
論文 参考訳(メタデータ) (2023-03-18T21:23:06Z) - Adversarial training with informed data selection [53.19381941131439]
アドリアリトレーニングは、これらの悪意のある攻撃からネットワークを守るための最も効率的なソリューションである。
本研究では,ミニバッチ学習に適用すべきデータ選択戦略を提案する。
シミュレーションの結果,ロバスト性および標準精度に関して良好な妥協が得られることがわかった。
論文 参考訳(メタデータ) (2023-01-07T12:09:50Z) - Comparative Performance of Machine Learning Algorithms in Cyberbullying
Detection: Using Turkish Language Preprocessing Techniques [0.0]
本研究の目的は,サイバーブロッキングを含むトルコ語メッセージの検出において,異なる機械学習アルゴリズムの性能を比較することである。
Light Gradient Boosting Model (LGBM)アルゴリズムは90.788%の精度と90.949%のF1スコアで最高の性能を示した。
論文 参考訳(メタデータ) (2021-01-29T18:28:44Z) - Enhancing the Identification of Cyberbullying through Participant Roles [1.399948157377307]
本稿では,ロールモデリングによるサイバーバブル検出の高度化に向けた新しいアプローチを提案する。
我々は、ASKfmからのデータセットを利用してマルチクラス分類を行い、参加者の役割を検出する。
論文 参考訳(メタデータ) (2020-10-13T19:13:07Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z) - Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve
Adversarial Robustness [79.47619798416194]
Learn2Perturbは、ディープニューラルネットワークの対角的堅牢性を改善するために、エンドツーエンドの機能摂動学習アプローチである。
予測最大化にインスパイアされ、ネットワークと雑音パラメータを連続的にトレーニングするために、交互にバックプロパゲーショントレーニングアルゴリズムが導入された。
論文 参考訳(メタデータ) (2020-03-02T18:27:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。