European Space Agency Benchmark for Anomaly Detection in Satellite Telemetry
- URL: http://arxiv.org/abs/2406.17826v1
- Date: Tue, 25 Jun 2024 13:23:37 GMT
- Title: European Space Agency Benchmark for Anomaly Detection in Satellite Telemetry
- Authors: Krzysztof Kotowski, Christoph Haskamp, Jacek Andrzejewski, Bogdan Ruszczak, Jakub Nalepa, Daniel Lakey, Peter Collins, Aybike Kolmas, Mauro Bartesaghi, Jose Martinez-Heras, Gabriele De Canio,
- Abstract summary: The European Space Agency Benchmark for Anomaly Detection in Satellite Telemetry (ESA-ADB) aims to establish a new standard in the domain.
The newly introduced ESA Anomalies dataset contains annotated real-life telemetry from three different ESA missions.
Results of typical anomaly detection algorithms assessed in our novel hierarchical evaluation pipeline show that new approaches are necessary to address operators' needs.
- Score: 2.0880207832785436
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning has vast potential to improve anomaly detection in satellite telemetry which is a crucial task for spacecraft operations. This potential is currently hampered by a lack of comprehensible benchmarks for multivariate time series anomaly detection, especially for the challenging case of satellite telemetry. The European Space Agency Benchmark for Anomaly Detection in Satellite Telemetry (ESA-ADB) aims to address this challenge and establish a new standard in the domain. It is a result of close cooperation between spacecraft operations engineers from the European Space Agency (ESA) and machine learning experts. The newly introduced ESA Anomalies Dataset contains annotated real-life telemetry from three different ESA missions, out of which two are included in ESA-ADB. Results of typical anomaly detection algorithms assessed in our novel hierarchical evaluation pipeline show that new approaches are necessary to address operators' needs. All elements of ESA-ADB are publicly available to ensure its full reproducibility.
Related papers
- The OPS-SAT benchmark for detecting anomalies in satellite telemetry [8.851378726587487]
We introduce the AI-ready benchmark dataset (OPSSAT-AD) containing the telemetry data acquired on board OPS-SAT.
OPSSAT-AD is accompanied with the baseline results obtained using 30 supervised and unsupervised classic and deep machine learning algorithms for anomaly detection.
arXiv Detail & Related papers (2024-06-29T11:12:22Z) - Stitching Satellites to the Edge: Pervasive and Efficient Federated LEO Satellite Learning [1.3121410433987561]
This paper proposes a novel FL-SEC framework that empowers satellites to execute large-scale machine learning (ML) tasks onboard efficiently.
Key components include personalized learning via divide-and-conquer, which identifies and eliminates redundant satellite images, and orbital model retraining, which generates an aggregated "orbital model" per orbit and retrains it before sending to the ground station.
Our approach dramatically reduces FL convergence time by nearly 30 times, and satellite energy consumption down to as low as 1.38 watts, all while maintaining an exceptional accuracy of up to 96%.
arXiv Detail & Related papers (2024-01-28T02:01:26Z) - FedSN: A Federated Learning Framework over Heterogeneous LEO Satellite Networks [18.213174641216884]
A large number of Low Earth Orbit (LEO) satellites have been launched and deployed successfully in space by commercial companies, such as SpaceX.
Due to multimodal sensors equipped by the LEO satellites, they serve not only for communication but also for various machine learning applications, such as space modulation recognition, remote sensing image classification, etc.
We propose FedSN as a general FL framework to tackle the above challenges, and fully explore data diversity on LEO satellites.
arXiv Detail & Related papers (2023-11-02T14:47:06Z) - SpaceQA: Answering Questions about the Design of Space Missions and
Space Craft Concepts [57.012600276711005]
We present SpaceQA, to the best of our knowledge the first open-domain QA system in Space mission design.
SpaceQA is part of an initiative by the European Space Agency (ESA) to facilitate the access, sharing and reuse of information about Space mission design.
arXiv Detail & Related papers (2022-10-07T09:41:39Z) - Multi-strip observation scheduling problem for ac-tive-imaging agile
earth observation satellites [0.0]
We investigate the multi-strip observation scheduling problem for an active-image agile earth observation satellite (MOSP)
A bi-objective optimization model is presented along with an adaptive bi-objective memetic algorithm which integrates the combined power of an adaptive large neighborhood search algorithm (ALNS) and a nondominated sorting genetic algorithm II (NSGA-II)
Our model is more versatile than existing models and provide enhanced capabilities in applied problem solving.
arXiv Detail & Related papers (2022-07-04T08:35:57Z) - Autonomous Aerial Robot for High-Speed Search and Intercept Applications [86.72321289033562]
A fully-autonomous aerial robot for high-speed object grasping has been proposed.
As an additional sub-task, our system is able to autonomously pierce balloons located in poles close to the surface.
Our approach has been validated in a challenging international competition and has shown outstanding results.
arXiv Detail & Related papers (2021-12-10T11:49:51Z) - Rethinking Drone-Based Search and Rescue with Aerial Person Detection [79.76669658740902]
The visual inspection of aerial drone footage is an integral part of land search and rescue (SAR) operations today.
We propose a novel deep learning algorithm to automate this aerial person detection (APD) task.
We present the novel Aerial Inspection RetinaNet (AIR) algorithm as the combination of these contributions.
arXiv Detail & Related papers (2021-11-17T21:48:31Z) - Artificial Intelligence for Satellite Communication: A Review [91.3755431537592]
This work provides a general overview of AI, its diverse sub-fields, and its state-of-the-art algorithms.
The application of AI to a wide variety of satellite communication aspects have demonstrated excellent potential, including beam-hopping, anti-jamming, network traffic forecasting, channel modeling, telemetry mining, ionospheric scintillation detecting, interference managing, remote sensing, behavior modeling, space-air-ground integrating, and energy managing.
arXiv Detail & Related papers (2021-01-25T13:01:16Z) - PAST-AI: Physical-layer Authentication of Satellite Transmitters via
Deep Learning [4.588028371034406]
PAST-AI is a methodology tailored to authenticate Low-Earth Orbit (LEO) satellites through fingerprinting of their IQ samples.
We prove that CNN and autoencoders can be successfully adopted to authenticate the satellite transducers.
arXiv Detail & Related papers (2020-10-12T06:08:11Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
A mega-constellation of low-earth orbit (LEO) satellites has the potential to enable long-range communication with low latency.
We study the problem of forwarding packets between two faraway ground terminals, through an LEO satellite selected from an orbiting constellation.
To maximize the end-to-end data rate, the satellite association and HAP location should be optimized.
We tackle this problem using deep reinforcement learning (DRL) with a novel action dimension reduction technique.
arXiv Detail & Related papers (2020-05-26T05:39:27Z) - Agile Earth observation satellite scheduling over 20 years:
formulations, methods and future directions [69.47531199609593]
Agile satellites with advanced attitude maneuvering capability are the new generation of Earth observation satellites (EOSs)
The continuous improvement in satellite technology and decrease in launch cost have boosted the development of agile EOSs (AEOSs)
arXiv Detail & Related papers (2020-03-13T09:38:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.