On the Role of AI in Managing Satellite Constellations: Insights from the ConstellAI Project
- URL: http://arxiv.org/abs/2507.15574v1
- Date: Mon, 21 Jul 2025 12:56:16 GMT
- Title: On the Role of AI in Managing Satellite Constellations: Insights from the ConstellAI Project
- Authors: Gregory F. Stock, Juan A. Fraire, Holger Hermanns, Jędrzej Mosiężny, Yusra Al-Khazraji, Julio Ramírez Molina, Evridiki V. Ntagiou,
- Abstract summary: This paper explores the role of Artificial Intelligence (AI) in optimizing the operation of satellite mega-constellations.<n>It draws from the ConstellAI project funded by the European Space Agency (ESA)<n>A consortium comprising GMV GmbH, Saarland University, and Thales Alenia Space collaborates to develop AI-driven algorithms.
- Score: 1.706656684496508
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid expansion of satellite constellations in near-Earth orbits presents significant challenges in satellite network management, requiring innovative approaches for efficient, scalable, and resilient operations. This paper explores the role of Artificial Intelligence (AI) in optimizing the operation of satellite mega-constellations, drawing from the ConstellAI project funded by the European Space Agency (ESA). A consortium comprising GMV GmbH, Saarland University, and Thales Alenia Space collaborates to develop AI-driven algorithms and demonstrates their effectiveness over traditional methods for two crucial operational challenges: data routing and resource allocation. In the routing use case, Reinforcement Learning (RL) is used to improve the end-to-end latency by learning from historical queuing latency, outperforming classical shortest path algorithms. For resource allocation, RL optimizes the scheduling of tasks across constellations, focussing on efficiently using limited resources such as battery and memory. Both use cases were tested for multiple satellite constellation configurations and operational scenarios, resembling the real-life spacecraft operations of communications and Earth observation satellites. This research demonstrates that RL not only competes with classical approaches but also offers enhanced flexibility, scalability, and generalizability in decision-making processes, which is crucial for the autonomous and intelligent management of satellite fleets. The findings of this activity suggest that AI can fundamentally alter the landscape of satellite constellation management by providing more adaptive, robust, and cost-effective solutions.
Related papers
- AI-Driven Collaborative Satellite Object Detection for Space Sustainability [29.817805350971366]
The growing density of satellites in low-Earth orbit (LEO) presents serious challenges to space sustainability.<n>Traditional ground-based tracking systems are constrained by latency and coverage limitations.<n>We propose a novel satellite clustering framework that enables the collaborative execution of deep learning (DL)-based space object detection tasks across multiple satellites.
arXiv Detail & Related papers (2025-08-01T16:31:55Z) - Constellation as a Service: Tailored Connectivity Management in Direct-Satellite-to-Device Networks [51.982277327318656]
Direct-satellite-to-device (DS2D) communication is emerging as a promising solution for global mobile service extension.<n>The challenge of managing DS2D connectivity for multi-constellations becomes outstanding.<n>This article proposes a Constellation as a Service framework, which treats the entire multi-constellation infrastructure as a shared resource pool.
arXiv Detail & Related papers (2025-07-01T16:06:29Z) - Multi-Agent Reinforcement Learning for Autonomous Multi-Satellite Earth Observation: A Realistic Case Study [9.798174763420896]
The exponential growth of Low Earth Orbit (LEO) satellites has revolutionised Earth Observation (EO) missions.<n>Traditional optimisation approaches struggle to handle the real-time decision-making demands of dynamic EO missions.<n>We investigate RL-based autonomous EO mission planning by modelling single-satellite operations and extending to multi-satellite constellations.
arXiv Detail & Related papers (2025-06-18T07:42:11Z) - Low-altitude Friendly-Jamming for Satellite-Maritime Communications via Generative AI-enabled Deep Reinforcement Learning [72.72954660774002]
Low Earth Orbit (LEO) satellites can be used to assist maritime wireless communications for data transmission across wide-ranging areas.<n>Extensive coverage of LEO satellites, combined with openness of channels, can cause the communication process to suffer from security risks.<n>This paper presents a low-altitude friendly-jamming LEO satellite-maritime communication system enabled by a unmanned aerial vehicle.
arXiv Detail & Related papers (2025-01-26T10:13:51Z) - On-orbit Servicing for Spacecraft Collision Avoidance With Autonomous Decision Making [0.0]
This study develops an AI-based implementation of autonomous On-Orbit Servicing (OOS) mission to assist with spacecraft collision avoidance maneuvers (CAMs)
We propose an autonomous servicer' trained with Reinforcement Learning (RL) to autonomously detect potential collisions between a target satellite and space debris, rendezvous and dock with endangered satellites, and execute optimal CAM.
arXiv Detail & Related papers (2024-09-25T17:40:37Z) - Reinforcement Learning-enabled Satellite Constellation Reconfiguration and Retasking for Mission-Critical Applications [10.652828373995519]
We critically assess the impact of satellite failures on constellation performance and the associated task requirements.
We introduce reinforcement learning (RL) techniques, specifically Q-learning, Policy Gradient, Deep Q-Network (DQN), and Proximal Policy Optimization (PPO)
Our results demonstrate that DQN and PPO achieve effective outcomes in terms of average rewards, task completion rates, and response times.
arXiv Detail & Related papers (2024-09-03T20:01:56Z) - A Distance Similarity-based Genetic Optimization Algorithm for Satellite Ground Network Planning Considering Feeding Mode [53.71516191515285]
The low transmission efficiency of the satellite data relay back mission has become a problem that is currently constraining the construction of the system.
We propose a distance similarity-based genetic optimization algorithm (DSGA), which considers the state characteristics between the tasks and introduces a weighted Euclidean distance method to determine the similarity between the tasks.
arXiv Detail & Related papers (2024-08-29T06:57:45Z) - Leveraging Large Language Models for Integrated Satellite-Aerial-Terrestrial Networks: Recent Advances and Future Directions [47.791246017237]
Integrated satellite, aerial, and terrestrial networks (ISATNs) represent a sophisticated convergence of diverse communication technologies.
This paper explores the transformative potential of integrating Large Language Models (LLMs) into ISATNs.
arXiv Detail & Related papers (2024-07-05T15:23:43Z) - Low-Thrust Orbital Transfer using Dynamics-Agnostic Reinforcement
Learning [0.0]
This study uses model-free Reinforcement Learning to train an agent on a constrained pericenter raising scenario for a low-thrust medium-Earth-orbit satellite.
The trained agent is then used to design a trajectory and to autonomously control the satellite during the cruise.
arXiv Detail & Related papers (2022-10-06T08:36:35Z) - Innovations in the field of on-board scheduling technologies [64.41511459132334]
This paper proposes an onboard scheduler, that integrates inside an onboard software framework for mission autonomy.
The scheduler is based on linear integer programming and relies on the use of a branch-and-cut solver.
The technology has been tested on an Earth Observation scenario, comparing its performance against the state-of-the-art scheduling technology.
arXiv Detail & Related papers (2022-05-04T12:00:49Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
A mega-constellation of low-earth orbit (LEO) satellites has the potential to enable long-range communication with low latency.
We study the problem of forwarding packets between two faraway ground terminals, through an LEO satellite selected from an orbiting constellation.
To maximize the end-to-end data rate, the satellite association and HAP location should be optimized.
We tackle this problem using deep reinforcement learning (DRL) with a novel action dimension reduction technique.
arXiv Detail & Related papers (2020-05-26T05:39:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.