AI-Driven Collaborative Satellite Object Detection for Space Sustainability
- URL: http://arxiv.org/abs/2508.00755v1
- Date: Fri, 01 Aug 2025 16:31:55 GMT
- Title: AI-Driven Collaborative Satellite Object Detection for Space Sustainability
- Authors: Peng Hu, Wenxuan Zhang,
- Abstract summary: The growing density of satellites in low-Earth orbit (LEO) presents serious challenges to space sustainability.<n>Traditional ground-based tracking systems are constrained by latency and coverage limitations.<n>We propose a novel satellite clustering framework that enables the collaborative execution of deep learning (DL)-based space object detection tasks across multiple satellites.
- Score: 29.817805350971366
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growing density of satellites in low-Earth orbit (LEO) presents serious challenges to space sustainability, primarily due to the increased risk of in-orbit collisions. Traditional ground-based tracking systems are constrained by latency and coverage limitations, underscoring the need for onboard, vision-based space object detection (SOD) capabilities. In this paper, we propose a novel satellite clustering framework that enables the collaborative execution of deep learning (DL)-based SOD tasks across multiple satellites. To support this approach, we construct a high-fidelity dataset simulating imaging scenarios for clustered satellite formations. A distance-aware viewpoint selection strategy is introduced to optimize detection performance, and recent DL models are used for evaluation. Experimental results show that the clustering-based method achieves competitive detection accuracy compared to single-satellite and existing approaches, while maintaining a low size, weight, and power (SWaP) footprint. These findings underscore the potential of distributed, AI-enabled in-orbit systems to enhance space situational awareness and contribute to long-term space sustainability.
Related papers
- A Semi-Supervised Federated Learning Framework with Hierarchical Clustering Aggregation for Heterogeneous Satellite Networks [2.5774044809669663]
Low Earth Orbit (LEO) satellites are emerging as key components of 6G networks.<n>We propose a novel semi-supervised federated learning framework tailored for LEO satellite networks with hierarchical aggregation.<n>Our proposal can significantly reduce processing time (up to 3x) and energy consumption (up to 4x) compared to other comparative methods.
arXiv Detail & Related papers (2025-07-30T02:47:14Z) - Constellation as a Service: Tailored Connectivity Management in Direct-Satellite-to-Device Networks [51.982277327318656]
Direct-satellite-to-device (DS2D) communication is emerging as a promising solution for global mobile service extension.<n>The challenge of managing DS2D connectivity for multi-constellations becomes outstanding.<n>This article proposes a Constellation as a Service framework, which treats the entire multi-constellation infrastructure as a shared resource pool.
arXiv Detail & Related papers (2025-07-01T16:06:29Z) - SpaceTrack-TimeSeries: Time Series Dataset towards Satellite Orbit Analysis [7.471495336112591]
This study collects and curating a representative dataset of maneuvering behavior from Starlink satellites.<n>The dataset integrates Two-Line Element (TLE) catalog data with corresponding high-precision ephemeris data, thereby enabling a more realistic and multidimensional modeling of space object behavior.<n>It provides valuable insights into practical deployment of maneuver detection methods and the evaluation of collision risks in increasingly congested orbital environments.
arXiv Detail & Related papers (2025-06-16T01:57:50Z) - An Edge AI Solution for Space Object Detection [29.817805350971366]
We propose an Edge AI solution based on deep-learning-based vision sensing for space object detection tasks.<n>We evaluate the performance of these models across various realistic space object detection scenarios.
arXiv Detail & Related papers (2025-05-08T14:51:19Z) - Low-altitude Friendly-Jamming for Satellite-Maritime Communications via Generative AI-enabled Deep Reinforcement Learning [72.72954660774002]
Low Earth Orbit (LEO) satellites can be used to assist maritime wireless communications for data transmission across wide-ranging areas.<n>Extensive coverage of LEO satellites, combined with openness of channels, can cause the communication process to suffer from security risks.<n>This paper presents a low-altitude friendly-jamming LEO satellite-maritime communication system enabled by a unmanned aerial vehicle.
arXiv Detail & Related papers (2025-01-26T10:13:51Z) - SatFed: A Resource-Efficient LEO Satellite-Assisted Heterogeneous Federated Learning Framework [19.59862482196897]
We propose SatFed, a resource-efficient satellite-assisted heterogeneous FL framework.
SatFed implements freshness-based model prioritization queues to optimize the use of highly constrained satellite-ground bandwidth.
Experiments with real-world LEO satellite networks demonstrate that SatFed achieves superior performance and robustness compared to state-of-the-art benchmarks.
arXiv Detail & Related papers (2024-09-20T13:44:00Z) - A Distance Similarity-based Genetic Optimization Algorithm for Satellite Ground Network Planning Considering Feeding Mode [53.71516191515285]
The low transmission efficiency of the satellite data relay back mission has become a problem that is currently constraining the construction of the system.
We propose a distance similarity-based genetic optimization algorithm (DSGA), which considers the state characteristics between the tasks and introduces a weighted Euclidean distance method to determine the similarity between the tasks.
arXiv Detail & Related papers (2024-08-29T06:57:45Z) - Vision-Based Detection of Uncooperative Targets and Components on Small Satellites [6.999319023465766]
Space debris and inactive satellites pose a threat to the safety and integrity of operational spacecraft.
Recent advancements in computer vision models can be used to improve upon existing methods for tracking such uncooperative targets.
This paper introduces an autonomous detection model designed to identify and monitor these objects using learning and computer vision.
arXiv Detail & Related papers (2024-08-22T02:48:13Z) - Collaborative Ground-Space Communications via Evolutionary Multi-objective Deep Reinforcement Learning [113.48727062141764]
We propose a distributed collaborative beamforming (DCB)-based uplink communication paradigm for enabling ground-space direct communications.
DCB treats the terminals that are unable to establish efficient direct connections with the low Earth orbit (LEO) satellites as distributed antennas.
We propose an evolutionary multi-objective deep reinforcement learning algorithm to obtain the desirable policies.
arXiv Detail & Related papers (2024-04-11T03:13:02Z) - Satellite Federated Edge Learning: Architecture Design and Convergence Analysis [47.057886812985984]
This paper introduces a novel FEEL algorithm, named FEDMEGA, tailored to mega-constellation networks.
By integrating inter-satellite links (ISL) for intra-orbit model aggregation, the proposed algorithm significantly reduces the usage of low data rate and intermittent GSL.
Our proposed method includes a ring all-reduce based intra-orbit aggregation mechanism, coupled with a network flow-based transmission scheme for global model aggregation.
arXiv Detail & Related papers (2024-04-02T11:59:58Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
A mega-constellation of low-earth orbit (LEO) satellites has the potential to enable long-range communication with low latency.
We study the problem of forwarding packets between two faraway ground terminals, through an LEO satellite selected from an orbiting constellation.
To maximize the end-to-end data rate, the satellite association and HAP location should be optimized.
We tackle this problem using deep reinforcement learning (DRL) with a novel action dimension reduction technique.
arXiv Detail & Related papers (2020-05-26T05:39:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.