論文の概要: Speech2UnifiedExpressions: Synchronous Synthesis of Co-Speech Affective Face and Body Expressions from Affordable Inputs
- arxiv url: http://arxiv.org/abs/2406.18068v1
- Date: Wed, 26 Jun 2024 04:53:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-27 14:38:19.367568
- Title: Speech2UnifiedExpressions: Synchronous Synthesis of Co-Speech Affective Face and Body Expressions from Affordable Inputs
- Title(参考訳): Speech2Unified Expressions: Affordable Inputs からの共音声影響顔と身体表現の同期合成
- Authors: Uttaran Bhattacharya, Aniket Bera, Dinesh Manocha,
- Abstract要約: 本稿では,デジタル文字の表情と上半身ジェスチャーを同時に合成するマルチモーダル学習手法を提案する。
提案手法は, 映像データから直接推定される, まばらな顔のランドマークと上体関節から学習し, もっともらしい感情的性格運動を生成する。
- 参考スコア(独自算出の注目度): 67.27840327499625
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a multimodal learning-based method to simultaneously synthesize co-speech facial expressions and upper-body gestures for digital characters using RGB video data captured using commodity cameras. Our approach learns from sparse face landmarks and upper-body joints, estimated directly from video data, to generate plausible emotive character motions. Given a speech audio waveform and a token sequence of the speaker's face landmark motion and body-joint motion computed from a video, our method synthesizes the motion sequences for the speaker's face landmarks and body joints to match the content and the affect of the speech. We design a generator consisting of a set of encoders to transform all the inputs into a multimodal embedding space capturing their correlations, followed by a pair of decoders to synthesize the desired face and pose motions. To enhance the plausibility of synthesis, we use an adversarial discriminator that learns to differentiate between the face and pose motions computed from the original videos and our synthesized motions based on their affective expressions. To evaluate our approach, we extend the TED Gesture Dataset to include view-normalized, co-speech face landmarks in addition to body gestures. We demonstrate the performance of our method through thorough quantitative and qualitative experiments on multiple evaluation metrics and via a user study. We observe that our method results in low reconstruction error and produces synthesized samples with diverse facial expressions and body gestures for digital characters.
- Abstract(参考訳): 本稿では,コモディティカメラを用いたRGBビデオデータを用いて,デジタルキャラクタの表情と上半身ジェスチャーを同時に合成するマルチモーダル学習手法を提案する。
提案手法は, 映像データから直接推定される, まばらな顔のランドマークと上体関節から学習し, もっともらしい感情的性格運動を生成する。
音声波形と、ビデオから計算した話者の顔のランドマーク運動のトークンシーケンスとから、話者の顔のランドマークとボディジョイントの動作シーケンスを合成し、音声の内容と影響を一致させる。
我々は,すべての入力をそれらの相関関係を捉えたマルチモーダル埋め込み空間に変換するエンコーダからなるジェネレータを設計し,次いで所望の顔と動きを合成するデコーダのペアを設計する。
合成の妥当性を高めるために,元の映像から計算した顔とポーズの動きと,その感情表現に基づいて合成された動きとを区別する逆微分器を用いる。
アプローチを評価するために、TED Gesture Datasetを拡張して、ボディジェスチャーに加えて、ビュー正規化され、共同音声による顔のランドマークを含める。
本研究では,複数の評価指標に関する定量的,定性的な実験とユーザスタディにより,本手法の性能を実証する。
提案手法は, 再現誤差が低く, 多様な表情の合成サンプルと, デジタルキャラクタのための身体ジェスチャーを生成する。
関連論文リスト
- GaussianSpeech: Audio-Driven Gaussian Avatars [76.10163891172192]
本稿では,3次元頭部アバターの高忠実度アニメーションシーケンスを音声音声から合成する手法であるGaussianSpeechを紹介する。
本稿では,表情に依存した色を生成するコンパクトで効率的な3DGSベースのアバター表現を提案する。
論文 参考訳(メタデータ) (2024-11-27T18:54:08Z) - Controllable Talking Face Generation by Implicit Facial Keypoints Editing [6.036277153327655]
本稿では,音声による表情の変形を制御するための音声合成手法であるControlTalkを提案する。
提案手法は,HDTFやMEADなど,広く使用されているベンチマークにおいて,最先端の性能よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-06-05T02:54:46Z) - From Audio to Photoreal Embodiment: Synthesizing Humans in Conversations [107.88375243135579]
音声を聴くと、顔、体、手を含む個人に対して、ジェスチャー動作の可能性を複数出力する。
ジェスチャーにおいて重要なニュアンスを表現できる高光写実性アバターを用いて生成した動きを可視化する。
実験により,本モデルが適切な多様なジェスチャーを生成することを示し,拡散法とVQ法の両方に優れることがわかった。
論文 参考訳(メタデータ) (2024-01-03T18:55:16Z) - Pose-Controllable 3D Facial Animation Synthesis using Hierarchical
Audio-Vertex Attention [52.63080543011595]
階層型音声頂点アテンションを利用してポーズ制御可能な3次元顔アニメーション合成法を提案する。
提案手法により,よりリアルな表情と頭部姿勢運動が得られる。
論文 参考訳(メタデータ) (2023-02-24T09:36:31Z) - Speech2AffectiveGestures: Synthesizing Co-Speech Gestures with Generative Adversarial Affective Expression Learning [52.73083137245969]
そこで本稿では, 感情表現を適切に表現し, 3次元ポーズを合成する生成的対人ネットワークを提案する。
本ネットワークは,入力音声とシードポーズから符号化された特徴の組込み空間からジェスチャを合成するジェネレータと,合成されたポーズシーケンスと実3Dポーズシーケンスを識別する識別器とから構成される。
論文 参考訳(メタデータ) (2021-07-31T15:13:39Z) - Write-a-speaker: Text-based Emotional and Rhythmic Talking-head
Generation [28.157431757281692]
本研究では,高忠実度表情と頭部動作を合成するテキストベーストーキングヘッドビデオ生成フレームワークを提案する。
本フレームワークは,話者に依存しないステージと話者固有のステージから構成される。
本アルゴリズムは,様々な表情や頭部の動きを含む高品質なフォトリアリスティックなトーキングヘッドビデオを実現する。
論文 参考訳(メタデータ) (2021-04-16T09:44:12Z) - Learning Speech-driven 3D Conversational Gestures from Video [106.15628979352738]
同期3D対話体と手のジェスチャーの両方を自動的に共同合成する最初のアプローチを提案します。
本アルゴリズムは,表情と手のジェスチャーの固有相関を利用したcnnアーキテクチャを用いる。
われわれはまた、33時間以上の注釈付きボディ、手、顔データからなる大きなコーパスを作成する新しい方法にも貢献する。
論文 参考訳(メタデータ) (2021-02-13T01:05:39Z) - Multi Modal Adaptive Normalization for Audio to Video Generation [18.812696623555855]
本稿では,音声信号と人物の単一画像とを入力として,任意の長さの人物映像を合成するマルチモーダル適応正規化(MAN)アーキテクチャを提案する。
このアーキテクチャでは,マルチモーダル適応正規化,キーポイントヒートマップ予測器,光フロー予測器,およびクラスアクティベーションマップ[58]ベースのレイヤを用いて,表情成分の動きを学習する。
論文 参考訳(メタデータ) (2020-12-14T07:39:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。