Knowledge graph enhanced retrieval-augmented generation for failure mode and effects analysis
- URL: http://arxiv.org/abs/2406.18114v3
- Date: Fri, 28 Mar 2025 20:04:14 GMT
- Title: Knowledge graph enhanced retrieval-augmented generation for failure mode and effects analysis
- Authors: Lukas Bahr, Christoph Wehner, Judith Wewerka, José Bittencourt, Ute Schmid, Rüdiger Daub,
- Abstract summary: This paper contributes by presenting set-theoretic standardization and a schema for FMEA data, an algorithm for creating vector embeddings from the FMEA-KG, and a KG-enhanced RAG framework.<n>Our approach is validated through a user experience design study, and we measure the precision and performance of the context retrieval recall.
- Score: 1.8849131083278732
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Failure mode and effects analysis (FMEA) is an essential tool for mitigating potential failures, particularly during the ramp-up phases of new products. However, its effectiveness is often limited by the reasoning capabilities of the FMEA tools, which are usually tabular structured. Meanwhile, large language models (LLMs) offer novel prospects for advanced natural language processing tasks. However, LLMs face challenges in tasks that require factual knowledge, a gap that retrieval-augmented generation (RAG) approaches aim to fill. RAG retrieves information from a non-parametric data store and uses a language model to generate responses. Building on this concept, we propose to enhance the non-parametric data store with a knowledge graph (KG). By integrating a KG into the RAG framework, we aim to leverage analytical and semantic question-answering capabilities for FMEA data. This paper contributes by presenting set-theoretic standardization and a schema for FMEA data, an algorithm for creating vector embeddings from the FMEA-KG, and a KG-enhanced RAG framework. Our approach is validated through a user experience design study, and we measure the precision and performance of the context retrieval recall.
Related papers
- KG-IRAG: A Knowledge Graph-Based Iterative Retrieval-Augmented Generation Framework for Temporal Reasoning [18.96570718233786]
GraphRAG has proven highly effective in enhancing the performance of Large Language Models (LLMs) on tasks that require external knowledge.
This paper presents Knowledge Graph-Based Iterative Retrieval-Augmented Generation (KG-IRAG), a novel framework that integrates KGs with iterative reasoning.
Three new datasets are formed to evaluate KG-IRAG's performance, demonstrating its potential beyond traditional RAG applications.
arXiv Detail & Related papers (2025-03-18T13:11:43Z) - STAR: A Foundation Model-driven Framework for Robust Task Planning and Failure Recovery in Robotic Systems [5.426894918217948]
STAR (Smart Task Adaptation and Recovery) is a novel framework that synergizes Foundation Models (FMs) with dynamically expanding Knowledge Graphs (KGs)
FMs offer remarkable generalization and contextual reasoning, but their limitations hinder reliable deployment.
We show that STAR demonstrated an 86% task planning accuracy and 78% recovery success rate, showing significant improvements over baseline methods.
arXiv Detail & Related papers (2025-03-08T05:05:21Z) - Exploring the Potential of Large Language Models as Predictors in Dynamic Text-Attributed Graphs [23.655368505970443]
We pioneer using large language models (LLMs) for predictive tasks on dynamic graphs.
We propose the GraphAgent-Dynamic (GAD) Framework, a multi-agent system that leverages collaborative LLMs.
GAD incorporates global and local summary agents to generate domain-specific knowledge, enhancing its transferability across domains.
arXiv Detail & Related papers (2025-03-05T08:28:11Z) - DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
This paper proposes DSMoE, a novel approach that achieves sparsification by partitioning pre-trained FFN layers into computational blocks.
We implement adaptive expert routing using sigmoid activation and straight-through estimators, enabling tokens to flexibly access different aspects of model knowledge.
Experiments on LLaMA models demonstrate that under equivalent computational constraints, DSMoE achieves superior performance compared to existing pruning and MoE approaches.
arXiv Detail & Related papers (2025-02-18T02:37:26Z) - Graph Foundation Models for Recommendation: A Comprehensive Survey [55.70529188101446]
Large language models (LLMs) are designed to process and comprehend natural language, making both approaches highly effective and widely adopted.
Recent research has focused on graph foundation models (GFMs)
GFMs integrate the strengths of GNNs and LLMs to model complex RS problems more efficiently by leveraging the graph-based structure of user-item relationships alongside textual understanding.
arXiv Detail & Related papers (2025-02-12T12:13:51Z) - Learning Task Representations from In-Context Learning [73.72066284711462]
Large language models (LLMs) have demonstrated remarkable proficiency in in-context learning.
We introduce an automated formulation for encoding task information in ICL prompts as a function of attention heads.
We show that our method's effectiveness stems from aligning the distribution of the last hidden state with that of an optimally performing in-context-learned model.
arXiv Detail & Related papers (2025-02-08T00:16:44Z) - Context Awareness Gate For Retrieval Augmented Generation [2.749898166276854]
Retrieval Augmented Generation (RAG) has emerged as a widely adopted approach to mitigate the limitations of large language models (LLMs) in answering domain-specific questions.
Previous research has predominantly focused on improving the accuracy and quality of retrieved data chunks to enhance the overall performance of the generation pipeline.
We investigate the impact of retrieving irrelevant information in open-domain question answering, highlighting its significant detrimental effect on the quality of LLM outputs.
arXiv Detail & Related papers (2024-11-25T06:48:38Z) - Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
We propose a generic RAG approach called Adaptive Note-Enhanced RAG (Adaptive-Note) for complex QA tasks.
Specifically, Adaptive-Note introduces an overarching view of knowledge growth, iteratively gathering new information in the form of notes.
In addition, we employ an adaptive, note-based stop-exploration strategy to decide "what to retrieve and when to stop" to encourage sufficient knowledge exploration.
arXiv Detail & Related papers (2024-10-11T14:03:29Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
We formulate the demand prediction as a meta-learning problem and develop the Feature-based First-Order Model-Agnostic Meta-Learning (F-FOMAML) algorithm.
By considering domain similarities through task-specific metadata, our model improved generalization, where the excess risk decreases as the number of training tasks increases.
Compared to existing state-of-the-art models, our method demonstrates a notable improvement in demand prediction accuracy, reducing the Mean Absolute Error by 26.24% on an internal vending machine dataset and by 1.04% on the publicly accessible JD.com dataset.
arXiv Detail & Related papers (2024-06-23T21:28:50Z) - Learning to Plan for Retrieval-Augmented Large Language Models from Knowledge Graphs [59.76268575344119]
We introduce a novel framework for enhancing large language models' (LLMs) planning capabilities by using planning data derived from knowledge graphs (KGs)
LLMs fine-tuned with KG data have improved planning capabilities, better equipping them to handle complex QA tasks that involve retrieval.
arXiv Detail & Related papers (2024-06-20T13:07:38Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
We introduce a novel approach to anomaly detection in financial data using Large Language Models (LLMs) embeddings.
Our experiments demonstrate that LLMs contribute valuable information to anomaly detection as our models outperform the baselines.
arXiv Detail & Related papers (2024-06-05T20:19:09Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
We introduce GenBench, a benchmarking suite specifically tailored for evaluating the efficacy of Genomic Foundation Models.
GenBench offers a modular and expandable framework that encapsulates a variety of state-of-the-art methodologies.
We provide a nuanced analysis of the interplay between model architecture and dataset characteristics on task-specific performance.
arXiv Detail & Related papers (2024-06-01T08:01:05Z) - DeepFMEA -- A Scalable Framework Harmonizing Process Expertise and Data-Driven PHM [0.0]
In most industrial settings, data is often limited in quantity, and its quality can be inconsistent.
To bridge this gap in practice, successfully industrialized PHM tools rely on the introduction of domain expertise as a prior.
DeepFMEA draws inspiration from the Failure Mode and Effects Analysis (FMEA) in its structured approach to the analysis of any technical system.
arXiv Detail & Related papers (2024-05-13T09:41:34Z) - InfoRM: Mitigating Reward Hacking in RLHF via Information-Theoretic Reward Modeling [66.3072381478251]
Reward hacking, also termed reward overoptimization, remains a critical challenge.
We propose a framework for reward modeling, namely InfoRM, by introducing a variational information bottleneck objective.
We show that InfoRM's overoptimization detection mechanism is not only effective but also robust across a broad range of datasets.
arXiv Detail & Related papers (2024-02-14T17:49:07Z) - Word-Level ASR Quality Estimation for Efficient Corpus Sampling and
Post-Editing through Analyzing Attentions of a Reference-Free Metric [5.592917884093537]
The potential of quality estimation (QE) metrics is introduced and evaluated as a novel tool to enhance explainable artificial intelligence (XAI) in ASR systems.
The capabilities of the NoRefER metric are explored in identifying word-level errors to aid post-editors in refining ASR hypotheses.
arXiv Detail & Related papers (2024-01-20T16:48:55Z) - A Guide for Practical Use of ADMG Causal Data Augmentation [0.0]
Causal data augmentation strategies have been pointed out as a solution to handle these challenges.
This paper experimentally analyzed the ADMG causal augmentation method considering different settings.
arXiv Detail & Related papers (2023-04-03T09:31:13Z) - Cauchy-Schwarz Regularized Autoencoder [68.80569889599434]
Variational autoencoders (VAE) are a powerful and widely-used class of generative models.
We introduce a new constrained objective based on the Cauchy-Schwarz divergence, which can be computed analytically for GMMs.
Our objective improves upon variational auto-encoding models in density estimation, unsupervised clustering, semi-supervised learning, and face analysis.
arXiv Detail & Related papers (2021-01-06T17:36:26Z) - Active Feature Acquisition with Generative Surrogate Models [11.655069211977464]
In this work, we consider models that perform active feature acquisition (AFA) and query the environment for unobserved features.
Our work reformulates the Markov decision process (MDP) that underlies the AFA problem as a generative modeling task.
We propose learning a generative surrogate model ( GSM) that captures the dependencies among input features to assess potential information gain from acquisitions.
arXiv Detail & Related papers (2020-10-06T02:10:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.