論文の概要: SafeAligner: Safety Alignment against Jailbreak Attacks via Response Disparity Guidance
- arxiv url: http://arxiv.org/abs/2406.18118v1
- Date: Wed, 26 Jun 2024 07:15:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-27 14:28:34.617442
- Title: SafeAligner: Safety Alignment against Jailbreak Attacks via Response Disparity Guidance
- Title(参考訳): SafeAligner: 応答格差誘導による脱獄攻撃に対する安全アライメント
- Authors: Caishuang Huang, Wanxu Zhao, Rui Zheng, Huijie Lv, Shihan Dou, Sixian Li, Xiao Wang, Enyu Zhou, Junjie Ye, Yuming Yang, Tao Gui, Qi Zhang, Xuanjing Huang,
- Abstract要約: SafeAlignerは、ジェイルブレイク攻撃に対する防御を強化するためのデコード段階で実装された方法論である。
安全性を高めるために訓練されたセンチネルモデルと、よりリスクの高い応答を生成するように設計されたイントルーダモデルである。
SafeAlignerは有害なトークンの発生を低減しつつ、有益トークンの可能性を高めることができることを示す。
- 参考スコア(独自算出の注目度): 48.80398992974831
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the development of large language models (LLMs) rapidly advances, securing these models effectively without compromising their utility has become a pivotal area of research. However, current defense strategies against jailbreak attacks (i.e., efforts to bypass security protocols) often suffer from limited adaptability, restricted general capability, and high cost. To address these challenges, we introduce SafeAligner, a methodology implemented at the decoding stage to fortify defenses against jailbreak attacks. We begin by developing two specialized models: the Sentinel Model, which is trained to foster safety, and the Intruder Model, designed to generate riskier responses. SafeAligner leverages the disparity in security levels between the responses from these models to differentiate between harmful and beneficial tokens, effectively guiding the safety alignment by altering the output token distribution of the target model. Extensive experiments show that SafeAligner can increase the likelihood of beneficial tokens, while reducing the occurrence of harmful ones, thereby ensuring secure alignment with minimal loss to generality.
- Abstract(参考訳): 大規模言語モデル(LLM)の開発が急速に進展するにつれて、これらのモデルを実用性を損なうことなく効果的に確保することが重要な研究領域となっている。
しかし、現在のジェイルブレイク攻撃に対する防衛戦略(すなわち、セキュリティプロトコルをバイパスする努力)は、適応性、汎用能力の制限、高コストに悩まされることが多い。
これらの課題に対処するため,脱コード段階で実装されたjailbreak攻撃に対する防御強化手法であるSafeAlignerを紹介した。
まず、安全性を高めるために訓練されたSentinel Modelと、よりリスクの高い応答を生成するために設計されたIntruder Modelの2つの特殊なモデルを開発する。
SafeAlignerは、これらのモデルからの応答間のセキュリティレベルの格差を利用して、有害トークンと有益なトークンを区別し、ターゲットモデルの出力トークン分布を変更して、安全アライメントを効果的に導く。
大規模な実験により、SafeAlignerは有益トークンの可能性を増大させ、有害トークンの発生を減少させ、一般性への損失を最小限に抑えることが示されている。
関連論文リスト
- How Jailbreak Defenses Work and Ensemble? A Mechanistic Investigation [39.44000290664494]
ジェイルブレイク攻撃は、生成モデルのビルトインセーフをバイパスする有害なプロンプトであり、モデルの脆弱性に対する深刻な懸念を引き起こす。
本稿では,標準生成タスクをバイナリ分類問題として再検討することにより,ジェイルブレイク防御を体系的に検討する。
我々は,全てのクエリに対する拒絶率を増加させる安全性シフトと,有害な入力と良質な入力を区別するモデルの能力を向上させる有害性判別という2つの主要な防御メカニズムを同定する。
論文 参考訳(メタデータ) (2025-02-20T12:07:40Z) - DELMAN: Dynamic Defense Against Large Language Model Jailbreaking with Model Editing [62.43110639295449]
大きな言語モデル(LLM)は意思決定に広く適用されているが、そのデプロイはJailbreak攻撃によって脅かされている。
Delmanは、jailbreak攻撃に対する厳密でダイナミックな保護のために、直接モデル編集を活用する新しいアプローチである。
Delman氏は、モデルの有用性を維持しながら有害な振る舞いを中和するために、関連するパラメータの最小セットを直接更新する。
論文 参考訳(メタデータ) (2025-02-17T10:39:21Z) - Vulnerability Mitigation for Safety-Aligned Language Models via Debiasing [12.986006070964772]
安全性アライメントは、現実世界のAIアプリケーションにとって重要な研究トピックである。
本研究はまず,モデルの有用性を犠牲にすることなく,このような脆弱性を除去することの難しさを明らかにした。
本手法は,安全性を維持しつつモデルの有用性を高め,トレードオフを改善できる。
論文 参考訳(メタデータ) (2025-02-04T09:31:54Z) - Root Defence Strategies: Ensuring Safety of LLM at the Decoding Level [10.476222570886483]
大規模言語モデル (LLM) は様々な産業で大きな有用性を示している。
LLMが進むにつれて、不正または悪意のある命令プロンプトによって有害な出力のリスクが増大する。
本稿では, LLMが有害な出力を認識する能力について検討し, 従来のトークンの危険性を評価する能力を明らかにし, 定量化する。
論文 参考訳(メタデータ) (2024-10-09T12:09:30Z) - MoJE: Mixture of Jailbreak Experts, Naive Tabular Classifiers as Guard for Prompt Attacks [2.873719680183099]
本稿では,大規模言語モデル(LLM)における脱獄予防の重要性を論じる。
我々は,既存の最先端ガードレールの限界を超えるよう設計された,新しいガードレールアーキテクチャであるMoJEを紹介する。
MoJEは、モデル推論中に最小限の計算オーバーヘッドを維持しながら、ジェイルブレイク攻撃の検出に優れる。
論文 参考訳(メタデータ) (2024-09-26T10:12:19Z) - Refuse Whenever You Feel Unsafe: Improving Safety in LLMs via Decoupled Refusal Training [67.30423823744506]
本研究では,Large Language Models (LLMs) の安全性チューニングにおける重要なギャップについて考察する。
我々は,LLMに対して,いかなる応答位置においても有害なプロンプトへのコンプライアンスを拒否する権限を与える新しいアプローチであるDecoupled Refusal Training(DeRTa)を導入する。
DeRTaは、(1)安全応答の開始に有害な応答のセグメントを付加することにより、安全でないコンテンツを認識・回避するようモデルに訓練する、(1)有害応答前フィックスによる最大限の類似度推定、(2)有害応答の開始を通して潜在的害から安全拒絶へ継続的に移行する能力を持つ強化遷移最適化(RTO)という2つの新しいコンポーネントを組み込んでいる。
論文 参考訳(メタデータ) (2024-07-12T09:36:33Z) - BEEAR: Embedding-based Adversarial Removal of Safety Backdoors in Instruction-tuned Language Models [57.5404308854535]
大型言語モデル(LLM)における安全バックドア攻撃は、正常な相互作用中の検出を回避しながら、安全でない振る舞いをステルス的に引き起こすことができる。
モデル埋め込み空間において,バックドアトリガーが比較的均一なドリフトを引き起こすという知見を活かした緩和手法であるBEEARを提案する。
両レベル最適化手法は、不要な振る舞いを誘発する普遍的な埋め込み摂動を特定し、モデルパラメータを調整し、これらの摂動に対する安全な振舞いを強化する。
論文 参考訳(メタデータ) (2024-06-24T19:29:47Z) - Defensive Prompt Patch: A Robust and Interpretable Defense of LLMs against Jailbreak Attacks [59.46556573924901]
本稿では,大規模言語モデル(LLM)のための新しいプロンプトベースの防御機構であるDPPを紹介する。
従来のアプローチとは異なり、DPP は LLM の高能率を維持しながら最小の攻撃成功率 (ASR) を達成するように設計されている。
LLAMA-2-7B-ChatおよびMistral-7B-Instruct-v0.2モデルによる実験結果から,DSPの堅牢性と適応性が確認された。
論文 参考訳(メタデータ) (2024-05-30T14:40:35Z) - Jailbroken: How Does LLM Safety Training Fail? [92.8748773632051]
ChatGPTの初期リリースに対する"jailbreak"攻撃は、望ましくない振る舞いを引き起こす。
このような攻撃がなぜ成功し、どのように発生できるかを考察する。
障害モードを利用した新たな攻撃は、安全でない要求の収集において、すべてのプロンプトで成功します。
論文 参考訳(メタデータ) (2023-07-05T17:58:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。