論文の概要: KAGNNs: Kolmogorov-Arnold Networks meet Graph Learning
- arxiv url: http://arxiv.org/abs/2406.18380v1
- Date: Wed, 26 Jun 2024 14:21:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-27 13:09:50.424192
- Title: KAGNNs: Kolmogorov-Arnold Networks meet Graph Learning
- Title(参考訳): KAGNNs: Kolmogorov-Arnold Networksがグラフ学習に対応
- Authors: Roman Bresson, Giannis Nikolentzos, George Panagopoulos, Michail Chatzianastasis, Jun Pang, Michalis Vazirgiannis,
- Abstract要約: グラフニューラルネットワーク(GNN)は,ノードとグラフ表現を学習するためのデファクトツールとなっている。
本研究では,KAN(Kolmogorov-Arnold Networks)とグラフ学習タスクの定理の性能を比較した。
- 参考スコア(独自算出の注目度): 27.638009679134523
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, Graph Neural Networks (GNNs) have become the de facto tool for learning node and graph representations. Most GNNs typically consist of a sequence of neighborhood aggregation (a.k.a., message passing) layers. Within each of these layers, the representation of each node is updated from an aggregation and transformation of its neighbours representations at the previous layer. The upper bound for the expressive power of message passing GNNs was reached through the use of MLPs as a transformation, due to their universal approximation capabilities. However, MLPs suffer from well-known limitations, which recently motivated the introduction of Kolmogorov-Arnold Networks (KANs). KANs rely on the Kolmogorov-Arnold representation theorem, rendering them a promising alternative to MLPs. In this work, we compare the performance of KANs against that of MLPs in graph learning tasks. We perform extensive experiments on node classification, graph classification and graph regression datasets. Our preliminary results indicate that while KANs are on-par with MLPs in classification tasks, they seem to have a clear advantage in the graph regression tasks.
- Abstract(参考訳): 近年,グラフニューラルネットワーク(GNN)は,ノードやグラフ表現を学習するためのデファクトツールとなっている。
ほとんどのGNNは、概して近隣のアグリゲーション層(すなわちメッセージパッシング層)で構成されている。
これらの各層の中で、各ノードの表現は、前層の隣り合う表現の集約と変換から更新される。
メッセージパッシングGNNの表現力の上限は、その普遍的な近似能力のため、MLPを変換として使用することで達成された。
しかし、MLPはよく知られた制限に悩まされ、最近KAN(Kolmogorov-Arnold Networks)を導入した。
カンはコルモゴロフ=アルノルドの表現定理に依存しており、MLPの代替として有望である。
本研究では,グラフ学習タスクにおけるKansの性能とMLPの性能を比較した。
ノード分類、グラフ分類、グラフ回帰データセットについて広範な実験を行う。
予備的な結果から,kan は分類タスクにおいて MLP と同等であるが,グラフ回帰タスクにおいて明らかな優位性を持っていることが示唆された。
関連論文リスト
- VQGraph: Rethinking Graph Representation Space for Bridging GNNs and
MLPs [97.63412451659826]
VQGraphは、各ノードのローカルサブストラクチャを離散コードとしてエンコードできるグラフデータ上の構造認識トークン化器を学習する。
VQGraphは、GNN-to-MLP蒸留におけるトランスダクティブおよびインダクティブの両方で、新しい最先端性能を実現する。
論文 参考訳(メタデータ) (2023-08-04T02:58:08Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
本稿では,シーケンシャルノード表現,すなわちSeq-HGNNを用いた新しい異種グラフニューラルネットワークを提案する。
Heterogeneous Graph Benchmark (HGB) と Open Graph Benchmark (OGB) の4つの広く使われているデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2023-05-18T07:27:18Z) - Learnable Graph Convolutional Attention Networks [7.465923786151107]
グラフニューラルネットワーク(GNN)は、ノード間のメッセージ交換を、隣接するすべてのノードの特徴を均一に(関連する)集約するか、あるいは特徴に一様でないスコア(動作)を適用することによって計算する。
最近の研究は、それぞれGCNとGATのGNNアーキテクチャの長所と短所を示している。
本稿では、注目スコアを計算するために、畳み込みに依存するグラフ畳み込みアテンション層(CAT)を紹介する。
以上の結果から,L-CATはネットワーク上の異なるGNN層を効率よく結合し,競合する手法よりも広い範囲で優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2022-11-21T21:08:58Z) - Neighborhood Convolutional Network: A New Paradigm of Graph Neural
Networks for Node Classification [12.062421384484812]
グラフ畳み込みネットワーク(GCN)は、各畳み込み層における近傍の集約と特徴変換を分離する。
本稿では,周辺畳み込みネットワーク(NCN)と呼ばれるGCNの新しいパラダイムを提案する。
このようにして、モデルは、近隣情報を集約するための分離GCNの利点を継承すると同時に、より強力な特徴学習モジュールを開発することができる。
論文 参考訳(メタデータ) (2022-11-15T02:02:51Z) - Weisfeiler and Leman go Hyperbolic: Learning Distance Preserving Node
Representations [26.77596449192451]
グラフニューラルネットワーク(GNN)は、グラフ上の機械学習問題を解決するための有望なツールとして登場した。
本論文では,Weisfeiler-Leman(WL)アルゴリズムによって生成される階層に基づいて,ノード間の距離関数を定義する。
本稿では,ノード間の距離を保存する表現を学習するモデルを提案する。
論文 参考訳(メタデータ) (2022-11-04T15:03:41Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [5.431036185361236]
典型的な好適なグラフでは、エッジを指向する可能性があり、エッジをそのまま扱うか、あるいは単純に非指向にするかは、GNNモデルの性能に大きな影響を与える。
そこで我々は,グラフの方向性を適応的に学習するモデルを開発し,ノード間の長距離相関を生かした。
論文 参考訳(メタデータ) (2021-11-19T08:54:21Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを学習するためのパラメトリックモデルの一般的なクラスである。
最近の研究は、GNNが主に機能をスムースにするためにグラフを使用しており、ベンチマークタスクで競合する結果を示していると主張している。
本研究では、これらの結果が異種グラフに拡張可能かどうかを問うとともに、異なるエンティティ間の複数のタイプの関係を符号化する。
論文 参考訳(メタデータ) (2020-11-19T06:03:35Z) - On Graph Neural Networks versus Graph-Augmented MLPs [51.23890789522705]
Graph-Augmented Multi-Layer Perceptrons (GA-MLPs)は、まずグラフ上の特定のマルチホップ演算子でノード機能を拡張する。
我々は,GA-MLPとGNNの表現力の分離を証明し,指数関数的に成長することを示す。
論文 参考訳(メタデータ) (2020-10-28T17:59:59Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - CatGCN: Graph Convolutional Networks with Categorical Node Features [99.555850712725]
CatGCNはグラフ学習に適したノード機能である。
エンドツーエンドでCatGCNを訓練し、半教師付きノード分類でそれを実証する。
論文 参考訳(メタデータ) (2020-09-11T09:25:17Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
グラフニューラルネットワーク(GNN)はグラフ表現学習において大きな成功を収めている。
GNNは、実際には非常に異なるグラフ部分構造に対して同一の表現を生成する。
より強力なGNNは、最近高階試験を模倣して提案され、基礎となるグラフ構造を疎結合にできないため、非効率である。
本稿では,グラフ表現学習の新たなクラスとして距離分解(DE)を提案する。
論文 参考訳(メタデータ) (2020-08-31T23:15:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。