論文の概要: KAGNNs: Kolmogorov-Arnold Networks meet Graph Learning
- arxiv url: http://arxiv.org/abs/2406.18380v3
- Date: Fri, 13 Dec 2024 09:34:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 15:00:18.692603
- Title: KAGNNs: Kolmogorov-Arnold Networks meet Graph Learning
- Title(参考訳): KAGNNs: Kolmogorov-Arnold Networksがグラフ学習に対応
- Authors: Roman Bresson, Giannis Nikolentzos, George Panagopoulos, Michail Chatzianastasis, Jun Pang, Michalis Vazirgiannis,
- Abstract要約: グラフニューラルネットワーク(GNN)は,ノードとグラフ表現を学習するためのデファクトツールとなっている。
本研究では,グラフ学習タスクにおけるKAN(Kolmogorov-Arnold Networks)の性能とGNNの性能を比較する。
- 参考スコア(独自算出の注目度): 27.638009679134523
- License:
- Abstract: In recent years, Graph Neural Networks (GNNs) have become the de facto tool for learning node and graph representations. Most GNNs typically consist of a sequence of neighborhood aggregation (a.k.a., message-passing) layers, within which the representation of each node is updated based on those of its neighbors. The most expressive message-passing GNNs can be obtained through the use of the sum aggregator and of MLPs for feature transformation, thanks to their universal approximation capabilities. However, the limitations of MLPs recently motivated the introduction of another family of universal approximators, called Kolmogorov-Arnold Networks (KANs) which rely on a different representation theorem. In this work, we compare the performance of KANs against that of MLPs on graph learning tasks. We evaluate two different implementations of KANs using two distinct base families of functions, namely B-splines and radial basis functions. We perform extensive experiments on node classification, graph classification and graph regression datasets. Our results indicate that KANs are on-par with or better than MLPs on all studied tasks, making them viable alternatives, at the cost of some computational complexity. Code is available at https: //github.com/RomanBresson/KAGNN.
- Abstract(参考訳): 近年,グラフニューラルネットワーク(GNN)は,ノードやグラフ表現を学習するためのデファクトツールとなっている。
ほとんどのGNNは、概して近隣のアグリゲーション(すなわちメッセージパッシング)層で構成されており、それぞれのノードの表現はその近隣のノードに基づいて更新される。
最も表現力のあるメッセージパッシングGNNは、総和アグリゲータとMPPを使って特徴変換を行うことができる。
しかし、MLPの制限は、最近、別の表現定理に依存するコルモゴロフ・アルノルドネットワーク(KAN)と呼ばれる普遍近似器の別の族の導入を動機付けている。
本研究では,グラフ学習タスクにおけるKansの性能とMLPの性能を比較した。
我々は,2つの異なる基本関数,すなわちB-スプラインとラジアル基底関数を用いて,kanの2つの異なる実装を評価する。
ノード分類、グラフ分類、グラフ回帰データセットについて広範な実験を行う。
以上の結果から,KAは全ての研究課題においてMPPと同等かそれ以上であり,計算複雑性を犠牲にして実現可能な代替手段であることが示唆された。
コードはhttps: //github.com/RomanBresson/KAGNNで入手できる。
関連論文リスト
- The Heterophilic Snowflake Hypothesis: Training and Empowering GNNs for Heterophilic Graphs [59.03660013787925]
ヘテロフィリー・スノーフレーク仮説を導入し、ヘテロ親和性グラフの研究をガイドし、促進するための効果的なソリューションを提供する。
観察の結果,我々のフレームワークは多種多様なタスクのための多目的演算子として機能することがわかった。
さまざまなGNNフレームワークに統合することができ、パフォーマンスを詳細に向上し、最適なネットワーク深さを選択するための説明可能なアプローチを提供する。
論文 参考訳(メタデータ) (2024-06-18T12:16:00Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
本稿では,シーケンシャルノード表現,すなわちSeq-HGNNを用いた新しい異種グラフニューラルネットワークを提案する。
Heterogeneous Graph Benchmark (HGB) と Open Graph Benchmark (OGB) の4つの広く使われているデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2023-05-18T07:27:18Z) - Exploiting Neighbor Effect: Conv-Agnostic GNNs Framework for Graphs with
Heterophily [58.76759997223951]
我々はフォン・ノイマンエントロピーに基づく新しい計量を提案し、GNNのヘテロフィリー問題を再検討する。
また、異種データセット上でのほとんどのGNNの性能を高めるために、Conv-Agnostic GNNフレームワーク(CAGNN)を提案する。
論文 参考訳(メタデータ) (2022-03-19T14:26:43Z) - Incorporating Heterophily into Graph Neural Networks for Graph Classification [6.709862924279403]
グラフニューラルネットワーク(GNN)は、しばしばグラフ分類において強いホモフィリを仮定し、ヘテロフィリを考えることは滅多にない。
We developed a novel GNN architecture called IHGNN (short for Incorporated Heterophily into Graph Neural Networks)
我々は、様々なグラフデータセット上でIHGNNを実証的に検証し、グラフ分類のための最先端のGNNよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-03-15T06:48:35Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
典型的な好適なグラフでは、エッジを指向する可能性があり、エッジをそのまま扱うか、あるいは単純に非指向にするかは、GNNモデルの性能に大きな影響を与える。
そこで我々は,グラフの方向性を適応的に学習するモデルを開発し,ノード間の長距離相関を生かした。
論文 参考訳(メタデータ) (2021-11-19T08:54:21Z) - On the approximation capability of GNNs in node
classification/regression tasks [4.141514895639094]
グラフニューラルネットワーク(GNN)は、グラフ処理のための幅広い種類の接続モデルである。
GNNはノード分類/回帰タスクの確率の普遍近似であることを示す。
論文 参考訳(メタデータ) (2021-06-16T17:46:51Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを学習するためのパラメトリックモデルの一般的なクラスである。
最近の研究は、GNNが主に機能をスムースにするためにグラフを使用しており、ベンチマークタスクで競合する結果を示していると主張している。
本研究では、これらの結果が異種グラフに拡張可能かどうかを問うとともに、異なるエンティティ間の複数のタイプの関係を符号化する。
論文 参考訳(メタデータ) (2020-11-19T06:03:35Z) - On Graph Neural Networks versus Graph-Augmented MLPs [51.23890789522705]
Graph-Augmented Multi-Layer Perceptrons (GA-MLPs)は、まずグラフ上の特定のマルチホップ演算子でノード機能を拡張する。
我々は,GA-MLPとGNNの表現力の分離を証明し,指数関数的に成長することを示す。
論文 参考訳(メタデータ) (2020-10-28T17:59:59Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
グラフニューラルネットワーク(GNN)はグラフ表現学習において大きな成功を収めている。
GNNは、実際には非常に異なるグラフ部分構造に対して同一の表現を生成する。
より強力なGNNは、最近高階試験を模倣して提案され、基礎となるグラフ構造を疎結合にできないため、非効率である。
本稿では,グラフ表現学習の新たなクラスとして距離分解(DE)を提案する。
論文 参考訳(メタデータ) (2020-08-31T23:15:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。