論文の概要: Cascading Large Language Models for Salient Event Graph Generation
- arxiv url: http://arxiv.org/abs/2406.18449v1
- Date: Wed, 26 Jun 2024 15:53:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-27 13:00:05.260411
- Title: Cascading Large Language Models for Salient Event Graph Generation
- Title(参考訳): イベントグラフ生成のための大規模言語モデルのカスケード
- Authors: Xingwei Tan, Yuxiang Zhou, Gabriele Pergola, Yulan He,
- Abstract要約: CALLMSAEは、SAlient Event Graph生成のためのCAscading Large Language Modelフレームワークである。
まず、LSMにサマリを生成するよう促すことで、サレントイベントを識別する。
我々は、イベント関係グラフを生成するための反復的なコード改善促進戦略を開発する。
LLM生成グラフ上の微調整グラフ生成モデルは、CAEVO生成データに基づいてトレーニングされたモデルよりも優れている。
- 参考スコア(独自算出の注目度): 19.731605612333716
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generating event graphs from long documents is challenging due to the inherent complexity of multiple tasks involved such as detecting events, identifying their relationships, and reconciling unstructured input with structured graphs. Recent studies typically consider all events with equal importance, failing to distinguish salient events crucial for understanding narratives. This paper presents CALLMSAE, a CAscading Large Language Model framework for SAlient Event graph generation, which leverages the capabilities of LLMs and eliminates the need for costly human annotations. We first identify salient events by prompting LLMs to generate summaries, from which salient events are identified. Next, we develop an iterative code refinement prompting strategy to generate event relation graphs, removing hallucinated relations and recovering missing edges. Fine-tuning contextualised graph generation models on the LLM-generated graphs outperforms the models trained on CAEVO-generated data. Experimental results on a human-annotated test set show that the proposed method generates salient and more accurate graphs, outperforming competitive baselines.
- Abstract(参考訳): 長いドキュメントからイベントグラフを生成することは、イベントの検出、関係の特定、構造化グラフによる構造化されていない入力の調整など、複数のタスクが本質的に複雑になるため、難しい。
最近の研究では、物語を理解するのに欠かせない有能な出来事を区別することができない、ほぼ同じ重要性の全ての出来事を考察している。
本稿では,Salient Event Graph生成のためのCAscading Large Language ModelフレームワークであるCALLMSAEについて述べる。
我々はまず,LSMに要約を生成するよう促すことにより,正解事象を識別し,そこから正解事象を同定する。
次に、イベント関係グラフの生成、幻覚的関係の除去、欠落したエッジの回復のための反復的コード改善促進戦略を開発する。
LLM生成グラフ上の微調整グラフ生成モデルは、CAEVO生成データに基づいてトレーニングされたモデルよりも優れている。
人手による注釈付きテストセットの実験結果から,提案手法は有能で正確なグラフを生成し,競争基準よりも優れていた。
関連論文リスト
- Instance-Aware Graph Prompt Learning [71.26108600288308]
本稿では,インスタンス対応グラフプロンプト学習(IA-GPL)について紹介する。
このプロセスでは、軽量アーキテクチャを使用して各インスタンスの中間プロンプトを生成する。
複数のデータセットと設定で実施された実験は、最先端のベースラインと比較して、IA-GPLの優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-11-26T18:38:38Z) - Let's Ask GNN: Empowering Large Language Model for Graph In-Context Learning [28.660326096652437]
本稿では,逐次テキスト処理とグラフ構造化データのギャップを埋める新しいアプローチであるAskGNNを紹介する。
AskGNNはグラフニューラルネットワーク(GNN)を利用した構造強化レトリバーを使用して、グラフをまたいだラベル付きノードを選択する。
3つのタスクと7つのLLMにわたる実験は、グラフタスクのパフォーマンスにおいてAskGNNが優れていることを示す。
論文 参考訳(メタデータ) (2024-10-09T17:19:12Z) - How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension [53.6373473053431]
この研究は、グラフパターンタスクにおける大規模言語モデルの能力を評価するためのベンチマークを導入する。
我々は,LLMが用語的記述と位相的記述の両方に基づいて,グラフパターンを理解できるかどうかを評価するベンチマークを開発した。
私たちのベンチマークでは、合成データセットと実際のデータセットの両方と、11のタスクと7のモデルで構成されています。
論文 参考訳(メタデータ) (2024-10-04T04:48:33Z) - Prompt-based Graph Model for Joint Liberal Event Extraction and Event Schema Induction [1.3154296174423619]
イベントは、エンティティの状態の変化を記述する、スピーチとテキストの不可欠なコンポーネントである。
イベント抽出タスクは、イベントを特定して分類し、イベントスキーマに従って参加者を見つけることを目的としている。
研究者らは、イベント抽出とイベントスキーマの同時発見を目的とした、リベラルイベント抽出(LEE)を提案する。
論文 参考訳(メタデータ) (2024-03-19T07:56:42Z) - Disentangled Representation Learning with Large Language Models for
Text-Attributed Graphs [57.052160123387104]
本稿では,TAGに対するLLMの推論と予測能力を向上させることができるDGTLモデルを提案する。
提案するDGTLモデルでは, グラフ構造情報をGNN層に組み込む。
実験により,提案したDGTLモデルにより,最先端のベースラインよりも優れた性能,あるいは同等の性能が得られることを示した。
論文 参考訳(メタデータ) (2023-10-27T14:00:04Z) - Empower Text-Attributed Graphs Learning with Large Language Models
(LLMs) [5.920353954082262]
本稿では,Large Language Models (LLMs) を用いたノード生成によるテキスト分散グラフの強化のためのプラグイン・アンド・プレイ手法を提案する。
エッジ予測器を用いて、生のデータセットに固有の構造情報をキャプチャし、新たに生成されたサンプルを元のグラフに統合する。
実験では、特に低ショットシナリオにおいて、提案したパラダイムの卓越した性能を示す。
論文 参考訳(メタデータ) (2023-10-15T16:04:28Z) - Integrating Graphs with Large Language Models: Methods and Prospects [68.37584693537555]
大規模言語モデル (LLMs) が最前線として登場し、様々なアプリケーションにおいて非並列の長所を示している。
LLMとグラフ構造化データを組み合わせることは、非常に興味深いトピックです。
本稿では、そのような統合を2つの主要なカテゴリに分岐する。
論文 参考訳(メタデータ) (2023-10-09T07:59:34Z) - Event Detection on Dynamic Graphs [4.128347119808724]
イベント検出は、グラフ分析アプリケーションにおいて、タイムリーな意思決定にとって重要なタスクである。
動的グラフ上でのイベント検出のための,単純かつ斬新な深層学習モデルDyGEDを提案する。
論文 参考訳(メタデータ) (2021-10-23T05:52:03Z) - Neural Language Modeling for Contextualized Temporal Graph Generation [49.21890450444187]
本稿では,大規模事前学習言語モデルを用いた文書のイベントレベル時間グラフの自動生成に関する最初の研究について述べる。
論文 参考訳(メタデータ) (2020-10-20T07:08:00Z) - Leveraging Graph to Improve Abstractive Multi-Document Summarization [50.62418656177642]
我々は、文書のよく知られたグラフ表現を活用することができる、抽象的多文書要約(MDS)モデルを開発する。
本モデルでは,長い文書の要約に欠かせない文書間関係を捉えるために,文書の符号化にグラフを利用する。
また,このモデルでは,要約生成プロセスの導出にグラフを利用することが可能であり,一貫性と簡潔な要約を生成するのに有用である。
論文 参考訳(メタデータ) (2020-05-20T13:39:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。