論文の概要: A Diagnostic Model for Acute Lymphoblastic Leukemia Using Metaheuristics and Deep Learning Methods
- arxiv url: http://arxiv.org/abs/2406.18568v2
- Date: Mon, 12 Aug 2024 06:11:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 20:53:08.512631
- Title: A Diagnostic Model for Acute Lymphoblastic Leukemia Using Metaheuristics and Deep Learning Methods
- Title(参考訳): メタヒューリスティックスとディープラーニング法を用いた急性リンパ性白血病の診断モデル
- Authors: Amir Masoud Rahmani, Parisa Khoshvaght, Hamid Alinejad-Rokny, Samira Sadeghi, Parvaneh Asghari, Zohre Arabi, Mehdi Hosseinzadeh,
- Abstract要約: 急性リンパ性白血病(ALL)重症度は、爆発細胞の存在と比率によって決定される。
本稿では,ResNetをベースとした特徴抽出器を用いて,さまざまな特徴抽出器や分類器とともにALLを検出する。
この手法は90.71%の精度と95.76%の感度を達成し、このデータセットの指標は他よりも優れていた。
- 参考スコア(独自算出の注目度): 6.318593483920089
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Acute lymphoblastic leukemia (ALL) severity is determined by the presence and ratios of blast cells (abnormal white blood cells) in both bone marrow and peripheral blood. Manual diagnosis of this disease is a tedious and time-consuming operation, making it difficult for professionals to accurately examine blast cell characteristics. To address this difficulty, researchers use deep learning and machine learning. In this paper, a ResNet-based feature extractor is utilized to detect ALL, along with a variety of feature selectors and classifiers. To get the best results, a variety of transfer learning models, including the Resnet, VGG, EfficientNet, and DensNet families, are used as deep feature extractors. Following extraction, different feature selectors are used, including Genetic algorithm, PCA, ANOVA, Random Forest, Univariate, Mutual information, Lasso, XGB, Variance, and Binary ant colony. After feature qualification, a variety of classifiers are used, with MLP outperforming the others. The recommended technique is used to categorize ALL and HEM in the selected dataset which is C-NMC 2019. This technique got an impressive 90.71% accuracy and 95.76% sensitivity for the relevant classifications, and its metrics on this dataset outperformed others.
- Abstract(参考訳): 急性リンパ性白血病(ALL)重症度は、骨髄および末梢血の爆発細胞(異常な白血球)の存在と比率によって決定される。
手動によるこの疾患の診断は退屈で時間を要する手術であり、プロがブラスト細胞の特徴を正確に調べることは困難である。
この困難に対処するために、研究者はディープラーニングと機械学習を使用している。
本稿では,ResNetをベースとした特徴抽出器を用いて,さまざまな特徴抽出器や分類器とともにALLを検出する。
最良の結果を得るためには、Resnet、VGG、EfficientNet、DensNetファミリなど、さまざまなトランスファー学習モデルが深い特徴抽出器として使用される。
抽出後、遺伝的アルゴリズム、PCA、ANOVA、ランダムフォレスト、Univariate、Mutual Information、Lasso、XGB、Variance、バイナリアリコロニーなど、さまざまな特徴セレクタが使用される。
特徴認定後、様々な分類器が使用され、MLPは他よりも優れている。
推奨されるテクニックは、選択されたデータセットのALLとHEMを分類するために使用される。
この手法は90.71%の精度と95.76%の感度を達成し、このデータセットの指標は他よりも優れていた。
関連論文リスト
- Advanced Hybrid Deep Learning Model for Enhanced Classification of Osteosarcoma Histopathology Images [0.0]
本研究は, 小児および思春期において最も多い骨癌である骨肉腫(OS)に焦点を当て, 腕と足の長い骨に影響を及ぼす。
我々は、OSの診断精度を向上させるために、畳み込みニューラルネットワーク(CNN)と視覚変換器(ViT)を組み合わせた新しいハイブリッドモデルを提案する。
このモデルは精度99.08%、精度99.10%、リコール99.28%、F1スコア99.23%を達成した。
論文 参考訳(メタデータ) (2024-10-29T13:54:08Z) - A Hybrid Feature Fusion Deep Learning Framework for Leukemia Cancer Detection in Microscopic Blood Sample Using Gated Recurrent Unit and Uncertainty Quantification [1.024113475677323]
白血病は、顕微鏡で血液や骨髄の腫れを分析して診断され、さらなる細胞化学的検査によって確認される。
深層学習は、白血病細胞の検出を補助する、顕微鏡スミア画像を分類する高度な方法を提供している。
本研究では,急性リンパ性白血病(ALL)の分類のためのハイブリッドディープラーニングモデルを構築した。
提案手法は、ALL-IDB1データセットで100%、ALL-IDB2データセットで98.07%、組み合わせたデータセットで98.64%という顕著な検出精度を達成した。
論文 参考訳(メタデータ) (2024-10-18T15:23:34Z) - Efficient Quality Control of Whole Slide Pathology Images with Human-in-the-loop Training [3.2646075700744928]
Histo whole slide image (WSI) は、特に精度オンコロジーにおいて、ディープラーニングに基づく診断ソリューションの開発に広く利用されている。
これらの診断ソフトウェアのほとんどは、トレーニングやテストデータにおけるバイアスや不純物に弱いため、不正確な診断につながる可能性がある。
我々は、WSIを6つの組織領域に分離する、頑健だが軽量なディープラーニングベースの分類器であるHistoROIを紹介した。
論文 参考訳(メタデータ) (2024-09-29T07:08:45Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - A study on deep feature extraction to detect and classify Acute Lymphoblastic Leukemia (ALL) [0.0]
急性リンパ芽球性白血病(ALL)は、主に成人と小児に影響を及ぼす血液悪性腫瘍である。
本研究では、深い学習、特に畳み込みニューラルネットワーク(CNN)を用いて、ALLの検出と分類を行う。
87%の精度で、ResNet101モデルは最高の結果をもたらし、その後にDenseNet121とVGG19が続いた。
論文 参考訳(メタデータ) (2024-09-10T17:53:29Z) - MMIL: A novel algorithm for disease associated cell type discovery [58.044870442206914]
単一細胞データセットは、しばしば個々の細胞ラベルを欠いているため、病気に関連する細胞を特定することは困難である。
セルレベルの分類器の訓練と校正を可能にする予測手法であるMixture Modeling for Multiple Learning Instance (MMIL)を導入する。
論文 参考訳(メタデータ) (2024-06-12T15:22:56Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
本稿では,エンド・ツー・エンドのMB腫瘍分類を提案し,様々な入力サイズとネットワーク次元の一致した移動学習を提案する。
161ケースのデータセットを用いて、より大規模な入力解像度を持つ事前学習されたEfficientNetが、大幅な性能改善をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-09-10T13:07:11Z) - Acute Lymphoblastic Leukemia Detection from Microscopic Images Using
Weighted Ensemble of Convolutional Neural Networks [4.095759108304108]
本稿では,深層畳み込みニューラルネットワーク(cnns)を用いた顕微鏡細胞画像からの全検出タスクを自動化した。
ネットワークのより優れた一般化を達成するために、様々なデータ拡張と前処理が組み込まれている。
提案する重み付きアンサンブルモデルでは, アンサンブル候補のカッパ値を重みとして, 重み付きF1スコア88.6 %, バランス付き精度86.2 %, 予備試験セットのAUC0.941を出力した。
論文 参考訳(メタデータ) (2021-05-09T18:58:48Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。