論文の概要: CanFields: Consolidating 4D Dynamic Shapes from Raw Scans
- arxiv url: http://arxiv.org/abs/2406.18582v2
- Date: Wed, 27 Nov 2024 18:14:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:22:56.736353
- Title: CanFields: Consolidating 4D Dynamic Shapes from Raw Scans
- Title(参考訳): CanFields: 原寸から4Dのダイナミックな形状を統合
- Authors: Miaowei Wang, Changjian Li, Amir Vaxman,
- Abstract要約: CanFields (Canonical Consolidation Fields, CanFields) は、独立に捕獲された3Dスキャンの時系列を単一のコヒーレントな変形形状に再構成する新しい手法である。
CanFieldsは、2つの幾何学的前提を組み込むことで、教師なしの方法で幾何学と変形を効果的に学習する。
各種生スキャンにおけるCanFieldsのロバスト性と精度を検証し,欠落した領域,スパースフレーム,ノイズにおいても優れた性能を示す。
- 参考スコア(独自算出の注目度): 12.221737707194261
- License:
- Abstract: We introduce Canonical Consolidation Fields (CanFields), a new method for reconstructing a time series of independently captured 3D scans into a single, coherent deforming shape. This 4D representation enables continuous refinement across both space and time. Unlike prior methods that often over-smooth the geometry or produce topological and geometric artifacts, CanFields effectively learns geometry and deformation in an unsupervised way by incorporating two geometric priors. First, we introduce a dynamic consolidator module that adjusts the input and assigns confidence scores, balancing the learning of the canonical shape and its deformations. Second, we use low-frequency velocity fields to guide deformation while preserving fine details in canonical shapes through high-frequency bias. We validate the robustness and accuracy of CanFields on diverse raw scans, demonstrating its superior performance even with missing regions, sparse frames, and noise. Code is available in the supplementary materials and will be released publicly upon acceptance.
- Abstract(参考訳): CanFields (Canonical Consolidation Fields, CanFields) は、独立に捕獲された3Dスキャンの時系列を単一のコヒーレントな変形形状に再構成する新しい手法である。
この4D表現は、空間と時間の両方にわたって連続的な洗練を可能にする。
幾何を過度に滑らかにしたり、位相的および幾何学的アーティファクトを生成したりする従来の方法とは異なり、CanFieldsは2つの幾何学的先行要素を組み込むことで、教師なしの方法で幾何学と変形を効果的に学習する。
まず、入力を調整し、信頼スコアを割り当て、標準形状とその変形の学習のバランスをとる動的コンソリエータモジュールを導入する。
第二に、低周波速度場を用いて変形を誘導し、高周波バイアスによる正準形状の細部を保存する。
各種生スキャンにおけるCanFieldsのロバスト性と精度を検証し,欠落した領域,スパースフレーム,ノイズにおいても優れた性能を示す。
コードは補足資料で利用可能で、受理後、公開される予定である。
関連論文リスト
- 4DPV: 4D Pet from Videos by Coarse-to-Fine Non-Rigid Radiance Fields [16.278222277579655]
野生の複数のRGB配列からカメラのポーズと未知の物体の4次元再構成を復元するための粗大なニューラルモデルを提案する。
提案手法では,事前構築した3Dテンプレートや3Dトレーニングデータ,制御条件を考慮しない。
複素および実世界の変形を伴う挑戦シナリオにおいて,本手法を徹底的に検証する。
論文 参考訳(メタデータ) (2024-11-15T15:31:58Z) - Deformation-Guided Unsupervised Non-Rigid Shape Matching [7.327850781641328]
非厳密な形状マッチングのための教師なしデータ駆動方式を提案する。
本手法は,3次元スキャナを用いたディジタル形状のマッチングにおいて特に堅牢である。
論文 参考訳(メタデータ) (2023-11-27T09:55:55Z) - Explorable Mesh Deformation Subspaces from Unstructured Generative
Models [53.23510438769862]
3次元形状の深い生成モデルは、しばしば潜在的な変動を探索するために使用できる連続的な潜伏空間を特徴付ける。
本研究では,手軽に探索可能な2次元探索空間から事前学習された生成モデルのサブ空間へのマッピングを構築することで,与えられたランドマーク形状の集合間のバリエーションを探索する手法を提案する。
論文 参考訳(メタデータ) (2023-10-11T18:53:57Z) - PatchRD: Detail-Preserving Shape Completion by Learning Patch Retrieval
and Deformation [59.70430570779819]
本稿では,3次元形状の欠落領域の幾何学的詳細化に焦点を当てたデータ駆動型形状補完手法を提案する。
私たちの重要な洞察は、部分的な入力から完全な欠落したリージョンへのパッチのコピーとデフォームです。
部分的な入力からパッチを抽出することで繰り返しパターンを活用し、ニューラルネットワークを用いてグローバルな構造的先行点を学習し、検索と変形の手順を導出する。
論文 参考訳(メタデータ) (2022-07-24T18:59:09Z) - Animatable Implicit Neural Representations for Creating Realistic
Avatars from Videos [63.16888987770885]
本稿では,マルチビュー映像からアニマタブルな人間モデルを構築することの課題について述べる。
線形ブレンドスキンアルゴリズムに基づくポーズ駆動変形場を提案する。
提案手法は,近年の人体モデリング手法よりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2022-03-15T17:56:59Z) - Animatable Neural Radiance Fields for Human Body Modeling [54.41477114385557]
本稿では,多視点映像から人間モデルを再構築する課題について述べる。
変形場を生成するためにニューラルブレンド重量場を導入する。
実験の結果,我々のアプローチは最近の人間の手法を大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2021-05-06T17:58:13Z) - SNARF: Differentiable Forward Skinning for Animating Non-Rigid Neural
Implicit Shapes [117.76767853430243]
SNARFは多角形メッシュに対する線形ブレンドスキンの利点とニューラル暗黙表面の利点を組み合わせたものである。
反復ルート探索を用いて任意の変形点のすべての正準対応を探索するフォワードスキンモデルを提案する。
最先端のニューラルネットワークの暗黙的表現と比較すると,このアプローチは,精度を維持しつつ,未認識のポーズを一般化する。
論文 参考訳(メタデータ) (2021-04-08T17:54:59Z) - Dense Non-Rigid Structure from Motion: A Manifold Viewpoint [162.88686222340962]
Non-Rigid Structure-from-Motion (NRSfM) 問題は、複数のフレームにまたがる2次元特徴対応から変形物体の3次元形状を復元することを目的としている。
提案手法は,ノイズに対する精度,スケーラビリティ,堅牢性を大幅に向上させる。
論文 参考訳(メタデータ) (2020-06-15T09:15:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。