AssertionBench: A Benchmark to Evaluate Large-Language Models for Assertion Generation
- URL: http://arxiv.org/abs/2406.18627v1
- Date: Wed, 26 Jun 2024 14:47:28 GMT
- Title: AssertionBench: A Benchmark to Evaluate Large-Language Models for Assertion Generation
- Authors: Vaishnavi Pulavarthi, Deeksha Nandal, Soham Dan, Debjit Pal,
- Abstract summary: We present a novel benchmark to evaluate Large-Language Models' effectiveness for assertion generation.
AssertioBench contains 100 curated Verilog hardware designs from OpenCores and formally verified assertions for each design generated from GoldMine and HARM.
- Score: 6.3585378855805725
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Assertions have been the de facto collateral for simulation-based and formal verification of hardware designs for over a decade. The quality of hardware verification, \ie, detection and diagnosis of corner-case design bugs, is critically dependent on the quality of the assertions. There has been a considerable amount of research leveraging a blend of data-driven statistical analysis and static analysis to generate high-quality assertions from hardware design source code and design execution trace data. Despite such concerted effort, all prior research struggles to scale to industrial-scale large designs, generates too many low-quality assertions, often fails to capture subtle and non-trivial design functionality, and does not produce any easy-to-comprehend explanations of the generated assertions to understand assertions' suitability to different downstream validation tasks. Recently, with the advent of Large-Language Models (LLMs), there has been a widespread effort to leverage prompt engineering to generate assertions. However, there is little effort to quantitatively establish the effectiveness and suitability of various LLMs for assertion generation. In this paper, we present AssertionBench, a novel benchmark to evaluate LLMs' effectiveness for assertion generation quantitatively. AssertioBench contains 100 curated Verilog hardware designs from OpenCores and formally verified assertions for each design generated from GoldMine and HARM. We use AssertionBench to compare state-of-the-art LLMs to assess their effectiveness in inferring functionally correct assertions for hardware designs. Our experiments demonstrate how LLMs perform relative to each other, the benefits of using more in-context exemplars in generating a higher fraction of functionally correct assertions, and the significant room for improvement for LLM-based assertion generators.
Related papers
- Scoring Verifiers: Evaluating Synthetic Verification in Code and Reasoning [59.25951947621526]
We introduce benchmarks designed to evaluate the impact of synthetic verification methods on assessing solution correctness.
We analyze synthetic verification methods in standard, reasoning-based, and reward-based LLMs.
Our results show that recent reasoning models significantly improve test case generation and that scaling test cases enhances verification accuracy.
arXiv Detail & Related papers (2025-02-19T15:32:11Z) - Automated Refactoring of Non-Idiomatic Python Code: A Differentiated Replication with LLMs [54.309127753635366]
We present the results of a replication study in which we investigate GPT-4 effectiveness in recommending and suggesting idiomatic actions.
Our findings underscore the potential of LLMs to achieve tasks where, in the past, implementing recommenders based on complex code analyses was required.
arXiv Detail & Related papers (2025-01-28T15:41:54Z) - Automatic High-quality Verilog Assertion Generation through Subtask-Focused Fine-Tuned LLMs and Iterative Prompting [0.0]
We present a large language model (LLM) -based flow to automatically generate high-quality SystemVerilog Assertions (SVA)
We introduce a novel sub-task-focused fine-tuning approach, leading to a remarkable 7.3-fold increase in the number of functionally correct assertions.
Experiments demonstrate a 26% increase in the number of assertions free from syntax errors using this approach.
arXiv Detail & Related papers (2024-11-23T03:52:32Z) - FVEval: Understanding Language Model Capabilities in Formal Verification of Digital Hardware [4.480157114854711]
We present FVEval, the first comprehensive benchmark for characterizing large language models (LLMs) performance in tasks pertaining to formal verification (FV)
The benchmark consists of three sub-tasks that measure LLM capabilities at different levels.
We present both collections of expert-written verification collateral and methodologies to scalably generate synthetic examples aligned with FV.
arXiv Detail & Related papers (2024-10-15T21:48:57Z) - Improving LLM Reasoning through Scaling Inference Computation with Collaborative Verification [52.095460362197336]
Large language models (LLMs) struggle with consistent and accurate reasoning.
LLMs are trained primarily on correct solutions, reducing their ability to detect and learn from errors.
We propose a novel collaborative method integrating Chain-of-Thought (CoT) and Program-of-Thought (PoT) solutions for verification.
arXiv Detail & Related papers (2024-10-05T05:21:48Z) - TestBench: Evaluating Class-Level Test Case Generation Capability of Large Language Models [8.22619177301814]
We introduce TestBench, a benchmark for class-level LLM-based test case generation.
We construct a dataset of 108 Java programs from 9 real-world, large-scale projects on GitHub.
We propose a fine-grained evaluation framework that considers five aspects of test cases: syntactic correctness, compilation correctness, test correctness, code coverage rate, and defect detection rate.
arXiv Detail & Related papers (2024-09-26T06:18:06Z) - Generative Verifiers: Reward Modeling as Next-Token Prediction [29.543787728397643]
Verifiers or reward models are often used to enhance the reasoning performance of large language models (LLMs)
We propose training verifiers using the ubiquitous next-token prediction objective, jointly on verification and solution generation.
We demonstrate that GenRM outperforms discriminative, DPO verifiers, and LLM-as-a-Judge.
arXiv Detail & Related papers (2024-08-27T17:57:45Z) - Self-Evaluation Improves Selective Generation in Large Language Models [54.003992911447696]
We reformulate open-ended generation tasks into token-level prediction tasks.
We instruct an LLM to self-evaluate its answers.
We benchmark a range of scoring methods based on self-evaluation.
arXiv Detail & Related papers (2023-12-14T19:09:22Z) - Revisiting Out-of-distribution Robustness in NLP: Benchmark, Analysis,
and LLMs Evaluations [111.88727295707454]
This paper reexamines the research on out-of-distribution (OOD) robustness in the field of NLP.
We propose a benchmark construction protocol that ensures clear differentiation and challenging distribution shifts.
We conduct experiments on pre-trained language models for analysis and evaluation of OOD robustness.
arXiv Detail & Related papers (2023-06-07T17:47:03Z) - Self-Checker: Plug-and-Play Modules for Fact-Checking with Large Language Models [75.75038268227554]
Self-Checker is a framework comprising a set of plug-and-play modules that facilitate fact-checking.
This framework provides a fast and efficient way to construct fact-checking systems in low-resource environments.
arXiv Detail & Related papers (2023-05-24T01:46:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.