A Large Language Model-Empowered Agent for Reliable and Robust Structural Analysis
- URL: http://arxiv.org/abs/2507.02938v1
- Date: Fri, 27 Jun 2025 04:16:53 GMT
- Title: A Large Language Model-Empowered Agent for Reliable and Robust Structural Analysis
- Authors: Jiachen Liu, Ziheng Geng, Ran Cao, Lu Cheng, Paolo Bocchini, Minghui Cheng,
- Abstract summary: Large language models (LLMs) have exhibited remarkable capabilities across diverse open-domain tasks, yet their application in specialized domains such as civil engineering remains largely unexplored.<n>This paper starts bridging this gap by evaluating and enhancing the reliability and robustness of LLMs in structural analysis of beams.<n> Experimental results demonstrate that the agent achieves accuracy exceeding 99.0% on the benchmark dataset, exhibiting reliable and robust performance across diverse conditions.
- Score: 14.754785659805869
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have exhibited remarkable capabilities across diverse open-domain tasks, yet their application in specialized domains such as civil engineering remains largely unexplored. This paper starts bridging this gap by evaluating and enhancing the reliability and robustness of LLMs in structural analysis of beams. Reliability is assessed through the accuracy of correct outputs under repetitive runs of the same problems, whereas robustness is evaluated via the performance across varying load and boundary conditions. A benchmark dataset, comprising eight beam analysis problems, is created to test the Llama-3.3 70B Instruct model. Results show that, despite a qualitative understanding of structural mechanics, the LLM lacks the quantitative reliability and robustness for engineering applications. To address these limitations, a shift is proposed that reframes the structural analysis as code generation tasks. Accordingly, an LLM-empowered agent is developed that (a) integrates chain-of-thought and few-shot prompting to generate accurate OpeeSeesPy code, and (b) automatically executes the code to produce structural analysis results. Experimental results demonstrate that the agent achieves accuracy exceeding 99.0% on the benchmark dataset, exhibiting reliable and robust performance across diverse conditions. Ablation studies highlight the complete example and function usage examples as the primary contributors to the agent's enhanced performance.
Related papers
- OmniEAR: Benchmarking Agent Reasoning in Embodied Tasks [52.87238755666243]
We present OmniEAR, a framework for evaluating how language models reason about physical interactions, tool usage, and multi-agent coordination in embodied tasks.<n>We model continuous physical properties and complex spatial relationships across 1,500 scenarios spanning household and industrial domains.<n>Our systematic evaluation reveals severe performance degradation when models must reason from constraints.
arXiv Detail & Related papers (2025-08-07T17:54:15Z) - Training Language Models to Generate Quality Code with Program Analysis Feedback [66.0854002147103]
Code generation with large language models (LLMs) is increasingly adopted in production but fails to ensure code quality.<n>We propose REAL, a reinforcement learning framework that incentivizes LLMs to generate production-quality code.
arXiv Detail & Related papers (2025-05-28T17:57:47Z) - IDA-Bench: Evaluating LLMs on Interactive Guided Data Analysis [60.32962597618861]
IDA-Bench is a novel benchmark evaluating large language models in multi-round interactive scenarios.<n>Agent performance is judged by comparing its final numerical output to the human-derived baseline.<n>Even state-of-the-art coding agents (like Claude-3.7-thinking) succeed on 50% of the tasks, highlighting limitations not evident in single-turn tests.
arXiv Detail & Related papers (2025-05-23T09:37:52Z) - Structured Prompting and Feedback-Guided Reasoning with LLMs for Data Interpretation [0.0]
Large language models (LLMs) have demonstrated remarkable capabilities in natural language understanding and task generalization.<n>This paper introduces the STROT Framework, a method for structured prompting and feedback-driven transformation logic generation.
arXiv Detail & Related papers (2025-05-03T00:05:01Z) - GateLens: A Reasoning-Enhanced LLM Agent for Automotive Software Release Analytics [9.549568621873386]
GateLens is an LLM-based system for analyzing data in the automotive domain.<n>Unlike traditional multi-agent or planning-based systems that can be slow, opaque, and costly to maintain, GateLens emphasizes speed, transparency, and reliability.
arXiv Detail & Related papers (2025-03-27T17:48:32Z) - Enhancing LLM Reliability via Explicit Knowledge Boundary Modeling [48.15636223774418]
Large language models (LLMs) are prone to hallucination stemming from misaligned self-awareness.<n>We propose the Explicit Knowledge Boundary Modeling framework to integrate fast and slow reasoning systems to harmonize reliability and usability.
arXiv Detail & Related papers (2025-03-04T03:16:02Z) - StructTest: Benchmarking LLMs' Reasoning through Compositional Structured Outputs [78.84060166851805]
StructTest is a novel benchmark that evaluates large language models (LLMs) on their ability to follow compositional instructions and generate structured outputs.<n> Assessments are conducted deterministically using a rule-based evaluator, which can be easily extended to new tasks and datasets.<n>We demonstrate that StructTest remains challenging even for top-performing models like Deepseek-V3/R1 and GPT-4o.
arXiv Detail & Related papers (2024-12-23T22:08:40Z) - Improving Retrieval Augmented Language Model with Self-Reasoning [20.715106330314605]
We propose a novel self-reasoning framework aimed at improving the reliability and traceability of RALMs.<n>The framework involves constructing self-reason trajectories with three processes: a relevance-aware process, an evidence-aware selective process, and a trajectory analysis process.<n>We have evaluated our framework across four public datasets to demonstrate the superiority of our method.
arXiv Detail & Related papers (2024-07-29T09:05:10Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
This paper introduces a systematic evaluation framework to assess Large Language Models in detecting cryptographic misuses.
Our in-depth analysis of 11,940 LLM-generated reports highlights that the inherent instabilities in LLMs can lead to over half of the reports being false positives.
The optimized approach achieves a remarkable detection rate of nearly 90%, surpassing traditional methods and uncovering previously unknown misuses in established benchmarks.
arXiv Detail & Related papers (2024-07-23T15:31:26Z) - AssertionBench: A Benchmark to Evaluate Large-Language Models for Assertion Generation [6.3585378855805725]
We present a novel benchmark to evaluate Large-Language Models' effectiveness for assertion generation.<n>AssertioBench contains 100 curated Verilog hardware designs from OpenCores and formally verified assertions for each design generated from GoldMine and HARM.
arXiv Detail & Related papers (2024-06-26T14:47:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.