論文の概要: Dimensions underlying the representational alignment of deep neural networks with humans
- arxiv url: http://arxiv.org/abs/2406.19087v1
- Date: Thu, 27 Jun 2024 11:14:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-28 14:27:46.527625
- Title: Dimensions underlying the representational alignment of deep neural networks with humans
- Title(参考訳): 深部ニューラルネットワークと人間との表現的アライメントの基礎となる次元
- Authors: Florian P. Mahner, Lukas Muttenthaler, Umut Güçlü, Martin N. Hebart,
- Abstract要約: 我々は、人間とディープニューラルネットワーク(DNN)において、同等の表現を得るための一般的なフレームワークを提案する。
この枠組みを人間に適用し、自然画像のDNNモデルを用いて、視覚次元と意味次元の両方の低次元DNN埋め込みを明らかにした。
人間とは対照的に、DNNは視覚的オーバーセマンティックな特徴の明確な優位性を示し、画像を表現するための異なる戦略を示した。
- 参考スコア(独自算出の注目度): 3.1668470116181817
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Determining the similarities and differences between humans and artificial intelligence is an important goal both in machine learning and cognitive neuroscience. However, similarities in representations only inform us about the degree of alignment, not the factors that determine it. Drawing upon recent developments in cognitive science, we propose a generic framework for yielding comparable representations in humans and deep neural networks (DNN). Applying this framework to humans and a DNN model of natural images revealed a low-dimensional DNN embedding of both visual and semantic dimensions. In contrast to humans, DNNs exhibited a clear dominance of visual over semantic features, indicating divergent strategies for representing images. While in-silico experiments showed seemingly-consistent interpretability of DNN dimensions, a direct comparison between human and DNN representations revealed substantial differences in how they process images. By making representations directly comparable, our results reveal important challenges for representational alignment, offering a means for improving their comparability.
- Abstract(参考訳): 人間と人工知能の類似点と相違点を決定することは、機械学習と認知神経科学の両方において重要な目標である。
しかし、表現の類似性は、それを決定する要因ではなく、アライメントの程度についてのみ教えてくれる。
近年の認知科学の発展を反映して,人間や深層ニューラルネットワーク(DNN)に匹敵する表現を得るための汎用的な枠組みを提案する。
この枠組みを人間に適用し、自然画像のDNNモデルを用いて、視覚次元と意味次元の両方の低次元DNN埋め込みを明らかにした。
人間とは対照的に、DNNは視覚的オーバーセマンティックな特徴の明確な優位性を示し、画像を表現するための異なる戦略を示した。
シリコン内実験では、DNN次元の相反する解釈可能性を示したが、人間とDNN表現の直接比較では、画像の処理方法にかなりの違いが認められた。
表現を直接的に比較することにより,表現の整合性向上のための重要な課題を明らかにした。
関連論文リスト
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Divergences in Color Perception between Deep Neural Networks and Humans [3.0315685825606633]
我々はディープニューラルネットワーク(DNN)におけるカラー埋め込みの知覚的コヒーレンスを評価する実験を開発した。
これらのアルゴリズムがオンライン調査によって収集された人間の色類似性判定の精度を評価する。
本研究では,ウェーブレット分解に基づく色知覚モデルとDNN性能を比較した。
論文 参考訳(メタデータ) (2023-09-11T20:26:40Z) - Evaluating alignment between humans and neural network representations in image-based learning tasks [5.657101730705275]
トレーニング済みの860ドルのニューラルネットワークモデルの表現が、人間の学習軌跡にどのようにマッピングされているかテストしました。
トレーニングデータセットのサイズは人間の選択に沿った中核的な決定要因であるのに対し、マルチモーダルデータ(テキストと画像)による対照的なトレーニングは、人間の一般化を予測するために現在公開されているモデルの一般的な特徴であることがわかった。
結論として、事前訓練されたニューラルネットワークは、タスク間で伝達可能な認知の基本的な側面を捉えているように見えるため、認知モデルのための表現を抽出するのに役立つ。
論文 参考訳(メタデータ) (2023-06-15T08:18:29Z) - Transferability of coVariance Neural Networks and Application to
Interpretable Brain Age Prediction using Anatomical Features [119.45320143101381]
グラフ畳み込みネットワーク(GCN)は、トポロジー駆動のグラフ畳み込み演算を利用して、推論タスクのためにグラフをまたいだ情報を結合する。
我々は、共分散行列をグラフとして、共分散ニューラルネットワーク(VNN)の形でGCNを研究した。
VNNは、GCNからスケールフリーなデータ処理アーキテクチャを継承し、ここでは、共分散行列が極限オブジェクトに収束するデータセットに対して、VNNが性能の転送可能性を示すことを示す。
論文 参考訳(メタデータ) (2023-05-02T22:15:54Z) - Harmonizing the object recognition strategies of deep neural networks
with humans [10.495114898741205]
最先端のディープニューラルネットワーク(DNN)は、精度が向上するにつれて、人間との整合性が低下していることを示す。
我々の研究は、現在DNNの設計を導くスケーリング法則が、人間の視覚を悪化させるモデルを生み出した最初の例である。
論文 参考訳(メタデータ) (2022-11-08T20:03:49Z) - Predicting Brain Age using Transferable coVariance Neural Networks [119.45320143101381]
我々は最近,サンプル共分散行列で動作する共分散ニューラルネットワーク(VNN)について検討した。
本稿では,大脳皮質厚みデータを用いた脳年齢推定におけるVNNの有用性を示す。
以上の結果から、VNNは脳年齢推定のためのマルチスケールおよびマルチサイト転送性を示すことが明らかとなった。
アルツハイマー病(AD)の脳年齢の文脈では,健常者に対してVNNを用いて予測される脳年齢がADに対して有意に上昇していることから,VNNの出力は解釈可能であることが示された。
論文 参考訳(メタデータ) (2022-10-28T18:58:34Z) - Prune and distill: similar reformatting of image information along rat
visual cortex and deep neural networks [61.60177890353585]
深部畳み込み神経ネットワーク(CNN)は、脳の機能的類似、視覚野の腹側流の優れたモデルを提供することが示されている。
ここでは、CNNまたは視覚野の内部表現で知られているいくつかの顕著な統計的パターンについて考察する。
我々は、CNNと視覚野が、オブジェクト表現の次元展開/縮小と画像情報の再構成と、同様の密接な関係を持っていることを示す。
論文 参考訳(メタデータ) (2022-05-27T08:06:40Z) - Comparing object recognition in humans and deep convolutional neural
networks -- An eye tracking study [7.222232547612573]
深部畳み込みニューラルネットワーク(DCNN)と腹側視覚経路は、大きなアーキテクチャと機能的な類似点を共有している。
人間の観察者(N = 45)と3人のフィードフォワードDCNNの比較を,視線追跡とサリエンシマップを用いて示す。
vNetと呼ばれる生物学的に妥当な受容野サイズを持つDCNNは、標準的なResNetアーキテクチャと対照的な人間の視聴行動と高い一致を示している。
論文 参考訳(メタデータ) (2021-07-30T23:32:05Z) - Continuous Emotion Recognition with Spatiotemporal Convolutional Neural
Networks [82.54695985117783]
In-theld でキャプチャした長いビデオシーケンスを用いて,持続的な感情認識のための最先端のディープラーニングアーキテクチャの適合性を検討する。
我々は,2D-CNNと長期記憶ユニットを組み合わせた畳み込みリカレントニューラルネットワークと,2D-CNNモデルの微調整時の重みを膨らませて構築した膨らませた3D-CNNモデルを開発した。
論文 参考訳(メタデータ) (2020-11-18T13:42:05Z) - Fooling the primate brain with minimal, targeted image manipulation [67.78919304747498]
本稿では、行動に反映される神経活動と知覚の両方の変化をもたらす、最小限の標的画像摂動を生成するための一連の手法を提案する。
我々の研究は、敵対的攻撃、すなわち最小限のターゲットノイズによる画像の操作で同じ目標を共有し、ANNモデルに画像の誤分類を誘導する。
論文 参考訳(メタデータ) (2020-11-11T08:30:54Z) - Seeing eye-to-eye? A comparison of object recognition performance in
humans and deep convolutional neural networks under image manipulation [0.0]
本研究では,ヒトとフィードフォワードニューラルネットワークの視覚コア物体認識性能の行動比較を目的とした。
精度分析の結果、人間はDCNNを全ての条件で上回るだけでなく、形状や色の変化に対する強い堅牢性も示している。
論文 参考訳(メタデータ) (2020-07-13T10:26:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。