Molecular Odor Prediction with Harmonic Modulated Feature Mapping and Chemically-Informed Loss
- URL: http://arxiv.org/abs/2502.01296v1
- Date: Mon, 03 Feb 2025 12:17:51 GMT
- Title: Molecular Odor Prediction with Harmonic Modulated Feature Mapping and Chemically-Informed Loss
- Authors: HongXin Xie, JianDe Sun, Yi Shao, Shuai Li, Sujuan Hou, YuLong Sun, Yuxiang Liu,
- Abstract summary: We introduce a novel feature mapping method and a molecular ensemble optimization loss function.
Our method significantly can improve the accuracy of molecular odor prediction across various deep learning models.
- Score: 11.654144823736143
- License:
- Abstract: Molecular odor prediction has great potential across diverse fields such as chemistry, pharmaceuticals, and environmental science, enabling the rapid design of new materials and enhancing environmental monitoring. However, current methods face two main challenges: First, existing models struggle with non-smooth objective functions and the complexity of mixed feature dimensions; Second, datasets suffer from severe label imbalance, which hampers model training, particularly in learning minority class labels. To address these issues, we introduce a novel feature mapping method and a molecular ensemble optimization loss function. By incorporating feature importance learning and frequency modulation, our model adaptively adjusts the contribution of each feature, efficiently capturing the intricate relationship between molecular structures and odor descriptors. Our feature mapping preserves feature independence while enhancing the model's efficiency in utilizing molecular features through frequency modulation. Furthermore, the proposed loss function dynamically adjusts label weights, improves structural consistency, and strengthens label correlations, effectively addressing data imbalance and label co-occurrence challenges. Experimental results show that our method significantly can improves the accuracy of molecular odor prediction across various deep learning models, demonstrating its promising potential in molecular structure representation and chemoinformatics.
Related papers
- Molecular Odor Prediction Based on Multi-Feature Graph Attention Networks [11.912107063761939]
Quantitative Structure-Odor Relationship task involves predicting associations between molecular structures and their corresponding odors.
We propose a method for QSOR, utilizing Graph Attention Networks to model molecular structures and capture both local and global features.
Our approach demonstrates clear advantages in QSOR prediction tasks, offering valuable insights into the application of deep learning in cheminformatics.
arXiv Detail & Related papers (2025-02-03T15:11:24Z) - GraphXForm: Graph transformer for computer-aided molecular design with application to extraction [73.1842164721868]
We present GraphXForm, a decoder-only graph transformer architecture, which is pretrained on existing compounds and then fine-tuned.
We evaluate it on two solvent design tasks for liquid-liquid extraction, showing that it outperforms four state-of-the-art molecular design techniques.
arXiv Detail & Related papers (2024-11-03T19:45:15Z) - YZS-model: A Predictive Model for Organic Drug Solubility Based on Graph Convolutional Networks and Transformer-Attention [9.018408514318631]
Traditional methods often miss complex molecular structures, leading to inaccuracies.
We introduce the YZS-Model, a deep learning framework integrating Graph Convolutional Networks (GCN), Transformer architectures, and Long Short-Term Memory (LSTM) networks.
YZS-Model achieved an $R2$ of 0.59 and an RMSE of 0.57, outperforming benchmark models.
arXiv Detail & Related papers (2024-06-27T12:40:29Z) - MoleculeCLA: Rethinking Molecular Benchmark via Computational Ligand-Target Binding Analysis [18.940529282539842]
We construct a large-scale and precise molecular representation dataset of approximately 140,000 small molecules.
Our dataset offers significant physicochemical interpretability to guide model development and design.
We believe this dataset will serve as a more accurate and reliable benchmark for molecular representation learning.
arXiv Detail & Related papers (2024-06-13T02:50:23Z) - Active Causal Learning for Decoding Chemical Complexities with Targeted Interventions [0.0]
We introduce an active learning approach that discerns underlying cause-effect relationships through strategic sampling.
This method identifies the smallest subset of the dataset capable of encoding the most information representative of a much larger chemical space.
The identified causal relations are then leveraged to conduct systematic interventions, optimizing the design task within a chemical space that the models have not encountered previously.
arXiv Detail & Related papers (2024-04-05T17:15:48Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule Representations [68.32093648671496]
We introduce GODE, which accounts for the dual-level structure inherent in molecules.
Molecules possess an intrinsic graph structure and simultaneously function as nodes within a broader molecular knowledge graph.
By pre-training two GNNs on different graph structures, GODE effectively fuses molecular structures with their corresponding knowledge graph substructures.
arXiv Detail & Related papers (2023-06-02T15:49:45Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
We develop molecular embeddings that encode complex molecular characteristics to improve the performance of few-shot molecular property prediction.
Our approach leverages large amounts of synthetic data, namely the results of molecular docking calculations.
On multiple molecular property prediction benchmarks, training from the embedding space substantially improves Multi-Task, MAML, and Prototypical Network few-shot learning performance.
arXiv Detail & Related papers (2023-02-04T01:32:40Z) - MolCPT: Molecule Continuous Prompt Tuning to Generalize Molecular
Representation Learning [77.31492888819935]
We propose a novel paradigm of "pre-train, prompt, fine-tune" for molecular representation learning, named molecule continuous prompt tuning (MolCPT)
MolCPT defines a motif prompting function that uses the pre-trained model to project the standalone input into an expressive prompt.
Experiments on several benchmark datasets show that MolCPT efficiently generalizes pre-trained GNNs for molecular property prediction.
arXiv Detail & Related papers (2022-12-20T19:32:30Z) - Interpretable Molecular Graph Generation via Monotonic Constraints [19.401468196146336]
Deep graph generative models treat molecule design as graph generation problems.
Existing models have many shortcomings, including poor interpretability and controllability toward desired molecular properties.
This paper proposes new methodologies for molecule generation with interpretable and deep controllable models.
arXiv Detail & Related papers (2022-02-28T08:35:56Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
We formulate molecular optimization as a style transfer problem and present a novel generative model that could automatically learn internal differences between two groups of non-parallel data.
Experiments on two molecular optimization tasks, toxicity modification and synthesizability improvement, demonstrate that our model significantly outperforms several state-of-the-art methods.
arXiv Detail & Related papers (2021-11-30T06:10:22Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
We study how to generate molecule conformations (textiti.e., 3D structures) from a molecular graph.
We propose a novel probabilistic framework to generate valid and diverse conformations given a molecular graph.
arXiv Detail & Related papers (2021-02-20T03:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.