論文の概要: RAVEN: Multitask Retrieval Augmented Vision-Language Learning
- arxiv url: http://arxiv.org/abs/2406.19150v1
- Date: Thu, 27 Jun 2024 13:08:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-28 14:08:07.759919
- Title: RAVEN: Multitask Retrieval Augmented Vision-Language Learning
- Title(参考訳): RAVEN:マルチタスク検索による視覚言語学習
- Authors: Varun Nagaraj Rao, Siddharth Choudhary, Aditya Deshpande, Ravi Kumar Satzoda, Srikar Appalaraju,
- Abstract要約: 世界中の知識をエンコードする大規模言語モデルのスケーリングは持続不可能であり、リソースバリアが悪化している。
Retrieval-Augmented Generation (RAG) は潜在的な解決策を示すが、その視覚言語モデル(VLM)への応用は検討中である。
本稿では,効率的なタスク特化微調整により,ベースVLMを強化した検索拡張VLMフレームワークであるRAVENを紹介する。
- 参考スコア(独自算出の注目度): 5.1583788731239455
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The scaling of large language models to encode all the world's knowledge in model parameters is unsustainable and has exacerbated resource barriers. Retrieval-Augmented Generation (RAG) presents a potential solution, yet its application to vision-language models (VLMs) is under explored. Existing methods focus on models designed for single tasks. Furthermore, they're limited by the need for resource intensive pre training, additional parameter requirements, unaddressed modality prioritization and lack of clear benefit over non-retrieval baselines. This paper introduces RAVEN, a multitask retrieval augmented VLM framework that enhances base VLMs through efficient, task specific fine-tuning. By integrating retrieval augmented samples without the need for additional retrieval-specific parameters, we show that the model acquires retrieval properties that are effective across multiple tasks. Our results and extensive ablations across retrieved modalities for the image captioning and VQA tasks indicate significant performance improvements compared to non retrieved baselines +1 CIDEr on MSCOCO, +4 CIDEr on NoCaps and nearly a +3\% accuracy on specific VQA question types. This underscores the efficacy of applying RAG approaches to VLMs, marking a stride toward more efficient and accessible multimodal learning.
- Abstract(参考訳): モデルパラメータにおける世界のすべての知識をエンコードする大規模言語モデルのスケーリングは、持続不可能であり、リソースバリアが悪化している。
Retrieval-Augmented Generation (RAG) は潜在的な解決策を示すが、その視覚言語モデル(VLM)への応用は検討中である。
既存の方法は単一タスク用に設計されたモデルに焦点を当てている。
さらに、リソース集約的な事前トレーニング、追加パラメータ要件、未適応のモダリティ優先順位付け、非検索ベースラインに対する明確なメリットの欠如によって制限されている。
本稿では,マルチタスク検索型VLMフレームワークであるRAVENを紹介する。
追加の検索パラメータを必要とせずに、検索強化サンプルを統合することにより、複数のタスクにまたがって有効となる検索特性を取得することを示す。
画像キャプションおよびVQAタスクに対する検索モダリティの広範な改善は,MSCOCOの非検索ベースライン+1CIDEr,NoCapsの+4CIDEr,特定のVQA質問タイプで約3倍の精度で,大幅な性能向上を示した。
このことは、VLMにRAGアプローチを適用することの有効性を強調し、より効率的でアクセスしやすいマルチモーダル学習への道のりを示す。
関連論文リスト
- A Multitask Deep Learning Model for Classification and Regression of Hyperspectral Images: Application to the large-scale dataset [44.94304541427113]
ハイパースペクトル画像上で複数の分類タスクと回帰タスクを同時に行うマルチタスク深層学習モデルを提案する。
我々は、TAIGAと呼ばれる大規模なハイパースペクトルデータセットに対するアプローチを検証した。
結果の総合的定性的および定量的分析により,提案手法が他の最先端手法よりも有意に優れていることを示す。
論文 参考訳(メタデータ) (2024-07-23T11:14:54Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Retrieval Meets Reasoning: Even High-school Textbook Knowledge Benefits Multimodal Reasoning [49.3242278912771]
RMR(Retrieval Meets Reasoning)と呼ばれる新しいマルチモーダルRAGフレームワークについて紹介する。
RMRフレームワークは、最も関連性の高い問合せ対を特定するために、バイモーダル検索モジュールを使用する。
これは、ベンチマークデータセットのスペクトルにわたって様々なビジョン言語モデルの性能を大幅に向上させる。
論文 参考訳(メタデータ) (2024-05-31T14:23:49Z) - Low-Rank Few-Shot Adaptation of Vision-Language Models [13.803180972839213]
視覚言語モデル(VLM)の少数ショット学習においてローランド適応(LoRA)を導入する。
驚くべきことに、我々の単純なCLIP-LoRA法は、トレーニング時間を短縮しつつ、大幅に改善されている。
本研究の結果は,アクセシブルラーニングとアダプタベースの研究の可能性を否定するものではない。
論文 参考訳(メタデータ) (2024-05-28T19:16:59Z) - Exploring the Transferability of Visual Prompting for Multimodal Large Language Models [47.162575147632396]
Transferable Visual Prompting (TVP) は、異なるモデルに転送可能な視覚的プロンプトを生成するためのシンプルで効果的なアプローチである。
本稿では,既存の視覚的プロンプト手法のクロスモデル特徴劣化問題に対処し,学習したプロンプトの伝達可能性を高めるための2つの戦略を提案する。
論文 参考訳(メタデータ) (2024-04-17T09:39:07Z) - RAR: Retrieving And Ranking Augmented MLLMs for Visual Recognition [78.97487780589574]
MLLM(Multimodal Large Language Models)は、細粒度カテゴリの分類において優れている。
本稿では,MLLMの検索とランク付けのための拡張手法を提案する。
提案手法は, 微粒化認識における固有の限界に対処するだけでなく, モデルの包括的知識基盤も維持する。
論文 参考訳(メタデータ) (2024-03-20T17:59:55Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
CoS(Chain-of-Spot)法は,注目領域に着目して特徴抽出を強化する手法である。
この技術により、LVLMは元の画像解像度を変更することなく、より詳細な視覚情報にアクセスすることができる。
実験の結果,LVLMの視覚的内容の理解と推論能力は著しく改善した。
論文 参考訳(メタデータ) (2024-03-19T17:59:52Z) - Enhancing Textbook Question Answering Task with Large Language Models
and Retrieval Augmented Generation [3.948068081583197]
本稿では,テキスト質問応答(TQA)における領域外シナリオを扱う手法を提案する。
LLMモデルLlama-2の微調整とRAGの導入により、我々のアーキテクチャはベースラインよりも優れ、検証セットでは4.12%、非ダイアグラム多重選択質問では9.84%の精度向上を実現している。
論文 参考訳(メタデータ) (2024-02-05T11:58:56Z) - Investigating Prompting Techniques for Zero- and Few-Shot Visual
Question Answering [7.640416680391081]
本稿では,ゼロおよび少数ショットの視覚質問応答(VQA)性能を向上させる効果的なプロンプト手法について検討する。
特定のテンプレートがVQAの結果に大きく影響し,戦略的テンプレート選択の必要性が強調される。
自由形式のオープンエンドVQA応答を評価する際の課題を軽減するために,簡単なLCM誘導前処理技術を導入する。
論文 参考訳(メタデータ) (2023-06-16T17:47:57Z) - OverPrompt: Enhancing ChatGPT through Efficient In-Context Learning [49.38867353135258]
複数のタスク入力を処理するために,LLMのコンテキスト内学習機能を活用したOverPromptを提案する。
本実験により,OverPromptはタスク性能を著しく損なうことなく,コスト効率の良いゼロショット分類を実現することができることがわかった。
論文 参考訳(メタデータ) (2023-05-24T10:08:04Z) - Task Residual for Tuning Vision-Language Models [69.22958802711017]
タスク残差調整(TaskRes)と呼ばれる視覚言語モデル(VLM)のための新しい効率的なチューニング手法を提案する。
TaskResは、トレーニング済みモデルの事前知識とターゲットタスクに関する新たな知識を明示的に分離する。
提案されたTaskResは単純だが有効であり、11のベンチマークデータセットで以前のメソッドよりも大幅に上回っている。
論文 参考訳(メタデータ) (2022-11-18T15:09:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。