JuliVQC: an Efficient Variational Quantum Circuit Simulator for Near-Term Quantum Algorithms
- URL: http://arxiv.org/abs/2406.19212v1
- Date: Thu, 27 Jun 2024 14:36:34 GMT
- Title: JuliVQC: an Efficient Variational Quantum Circuit Simulator for Near-Term Quantum Algorithms
- Authors: Wei-You Liao, Xiang Wang, Xiao-Yue Xu, Chen Ding, Shuo Zhang, He-Liang Huang, Chu Guo,
- Abstract summary: JuliVQC is a light-weight, yet extremely efficient variational quantum circuit simulator.
It is extensively used to characterize the circuit noises, as a building block in the Schr$ddottexto$dinger-Feynman algorithm.
- Score: 11.211074128868798
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce JuliVQC: a light-weight, yet extremely efficient variational quantum circuit simulator. JuliVQC is part of an effort for classical simulation of the \textit{Zuchongzhi} quantum processors, where it is extensively used to characterize the circuit noises, as a building block in the Schr$\ddot{\text{o}}$dinger-Feynman algorithm for classical verification and performance benchmarking, and for variational optimization of the Fsim gate parameters. The design principle of JuliVQC is three-fold: (1) Transparent implementation of its core algorithms, realized by using the high-performance script language Julia; (2) Efficiency is the focus, with a cache-friendly implementation of each elementary operations and support for shared-memory parallelization; (3) Native support of automatic differentiation for both the noiseless and noisy quantum circuits. We perform extensive numerical experiments on JuliVQC in different application scenarios, including quantum circuits, variational quantum circuits and their noisy counterparts, which show that its performance is among the top of the popular alternatives.
Related papers
- Provably Robust Training of Quantum Circuit Classifiers Against Parameter Noise [49.97673761305336]
Noise remains a major obstacle to achieving reliable quantum algorithms.<n>We present a provably noise-resilient training theory and algorithm to enhance the robustness of parameterized quantum circuit classifiers.
arXiv Detail & Related papers (2025-05-24T02:51:34Z) - Performance Benchmarking of Quantum Algorithms for Hard Combinatorial Optimization Problems: A Comparative Study of non-FTQC Approaches [0.0]
This study systematically benchmarks several non-fault-tolerant quantum computing algorithms across four distinct optimization problems.
Our benchmark includes noisy intermediate-scale quantum (NISQ) algorithms, such as the variational quantum eigensolver.
Our findings reveal that no single non-FTQC algorithm performs optimally across all problem types, underscoring the need for tailored algorithmic strategies.
arXiv Detail & Related papers (2024-10-30T08:41:29Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Surrogate optimization of variational quantum circuits [1.0546736060336612]
Variational quantum eigensolvers are touted as a near-term algorithm capable of impacting many applications.
Finding algorithms and methods to improve convergence is important to accelerate the capabilities of near-term hardware for VQE.
arXiv Detail & Related papers (2024-04-03T18:00:00Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum Circuit Optimization through Iteratively Pre-Conditioned
Gradient Descent [0.4915744683251151]
iteratively preconditioned gradient descent (IPG) for optimizing quantum circuits and demonstrate performance speedups for state preparation and implementation of quantum algorithmics.
We show an improvement in fidelity by a factor of $104$ for preparing a 4-qubit W state and a maximally entangled 5-qubit GHZ state compared to other commonly used classicals tuning the same ansatz.
We also show gains for optimizing a unitary for a quantum Fourier transform using IPG, and report results of running such optimized circuits on IonQ's quantum processing unit (QPU)
arXiv Detail & Related papers (2023-09-18T17:30:03Z) - Benchmarking of Different Optimizers in the Variational Quantum
Algorithms for Applications in Quantum Chemistry [0.0]
Classical yardsticks play a crucial role in determining the accuracy and convergence of variational quantum algorithms.
We consider a few popular yardsticks and assess their performance in variational quantum algorithms for applications in quantum chemistry.
arXiv Detail & Related papers (2022-08-22T13:02:00Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Accelerating variational quantum algorithms with multiple quantum
processors [78.36566711543476]
Variational quantum algorithms (VQAs) have the potential of utilizing near-term quantum machines to gain certain computational advantages.
Modern VQAs suffer from cumbersome computational overhead, hampered by the tradition of employing a solitary quantum processor to handle large data.
Here we devise an efficient distributed optimization scheme, called QUDIO, to address this issue.
arXiv Detail & Related papers (2021-06-24T08:18:42Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Classical Optimizers for Noisy Intermediate-Scale Quantum Devices [1.43494686131174]
We present a collection of tunings tuned for usage on Noisy Intermediate-Scale Quantum (NISQ) devices.
We analyze the efficiency and effectiveness of different minimizes in a VQE case study.
While most results to date concentrated on tuning the quantum VQE circuit, we show that, in the presence of quantum noise, the classical minimizer step needs to be carefully chosen to obtain correct results.
arXiv Detail & Related papers (2020-04-06T21:31:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.