ALMA: a mathematics-driven approach for determining tuning parameters in generalized LASSO problems, with applications to MRI
- URL: http://arxiv.org/abs/2406.19239v1
- Date: Thu, 27 Jun 2024 15:02:04 GMT
- Title: ALMA: a mathematics-driven approach for determining tuning parameters in generalized LASSO problems, with applications to MRI
- Authors: Gianluca Giacchi, Isidoros Iakovidis, Bastien Milani, Matthias Stuber, Micah Murray, Benedetta Franceschiello,
- Abstract summary: ALMA (Algorithm for Lagrange Multipliers Approximation) computes tuning parameters for generalized LASSO problems during MRI reconstruction.
ALMA is adaptable to more generalized LASSO problems but is also robust to accommodate other forms of regularization beyond total variation.
- Score: 0.3518504468878697
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magnetic Resonance Imaging (MRI) is a powerful technique employed for non-invasive in vivo visualization of internal structures. Sparsity is often deployed to accelerate the signal acquisition or overcome the presence of motion artifacts, improving the quality of image reconstruction. Image reconstruction algorithms use TV-regularized LASSO (Total Variation-regularized LASSO) to retrieve the missing information of undersampled signals, by cleaning the data of noise and while optimizing sparsity. A tuning parameter moderates the balance between these two aspects; its choice affecting the quality of the reconstructions. Currently, there is a lack of general deterministic techniques to choose these parameters, which are oftentimes manually selected and thus hinder the reliability of the reconstructions. Here, we present ALMA (Algorithm for Lagrange Multipliers Approximation), an iterative mathematics-inspired technique that computes tuning parameters for generalized LASSO problems during MRI reconstruction. We analyze quantitatively the performance of these parameters for imaging reconstructions via TV-LASSO in an MRI context on phantoms. Although our study concentrates on TV-LASSO, the techniques developed here hold significant promise for a wide array of applications. ALMA is not only adaptable to more generalized LASSO problems but is also robust to accommodate other forms of regularization beyond total variation. Moreover, it extends effectively to handle non-Cartesian sampling trajectories, broadening its utility in complex data reconstruction scenarios. More generally, ALMA provides a powerful tool for numerically solving constrained optimization problems across various disciplines, offering a versatile and impactful solution for advanced computational challenges.
Related papers
- Rotation Equivariant Arbitrary-scale Image Super-Resolution [62.41329042683779]
The arbitrary-scale image super-resolution (ASISR) aims to achieve arbitrary-scale high-resolution recoveries from a low-resolution input image.<n>We make efforts to construct a rotation equivariant ASISR method in this study.
arXiv Detail & Related papers (2025-08-07T08:51:03Z) - Generative imaging for radio interferometry with fast uncertainty quantification [4.294714866547824]
Learnable reconstruction methods have shown promise in providing efficient and high quality reconstruction.<n>In this article we explore the use of generative neural networks that enable efficient approximate sampling of the posterior distribution.<n>Our methods provide a significant step toward computationally efficient, scalable, and uncertainty-aware imaging for next-generation radio telescopes.
arXiv Detail & Related papers (2025-07-28T18:52:07Z) - Enhanced Confocal Laser Scanning Microscopy with Adaptive Physics Informed Deep Autoencoders [0.0]
We present a physics-informed deep learning framework to address limitations in Confocal Laser Scanning Microscopy.
The model reconstructs high fidelity images from heavily noisy inputs by using convolutional and transposed convolutional layers.
arXiv Detail & Related papers (2025-01-24T18:32:34Z) - Perceptual-Distortion Balanced Image Super-Resolution is a Multi-Objective Optimization Problem [23.833099288826045]
Training Single-Image Super-Resolution (SISR) models using pixel-based regression losses can achieve high distortion metrics scores.
However, they often results in blurry images due to insufficient recovery of high-frequency details.
We propose a novel method that incorporates Multi-Objective Optimization (MOO) into the training process of SISR models to balance perceptual quality and distortion.
arXiv Detail & Related papers (2024-09-05T02:14:04Z) - Cross-Scan Mamba with Masked Training for Robust Spectral Imaging [51.557804095896174]
We propose the Cross-Scanning Mamba, named CS-Mamba, that employs a Spatial-Spectral SSM for global-local balanced context encoding.
Experiment results show that our CS-Mamba achieves state-of-the-art performance and the masked training method can better reconstruct smooth features to improve the visual quality.
arXiv Detail & Related papers (2024-08-01T15:14:10Z) - Robust Depth Linear Error Decomposition with Double Total Variation and
Nuclear Norm for Dynamic MRI Reconstruction [15.444386058967579]
There are still problems with dynamic MRI k-space reconstruction based on Compressed Sensing (CS)
In this paper, we propose a novel robust lowrank dynamic MRI reconstruction optimization model via highly under-sampled Fourier Transform (DFT)
Experiments on dynamic MRI data demonstrate the superior performance proposed method in terms of both reconstruction accuracy and time complexity.
arXiv Detail & Related papers (2023-10-23T13:34:59Z) - vSHARP: variable Splitting Half-quadratic Admm algorithm for Reconstruction of inverse-Problems [7.043932618116216]
vSHARP (variable Splitting Half-quadratic ADMM algorithm for Reconstruction of inverse Problems) is a novel Deep Learning (DL)-based method for solving ill-posed inverse problems arising in Medical Imaging (MI)
For data consistency, vSHARP unrolls a differentiable gradient descent process in the image domain, while a DL-based denoiser, such as a U-Net architecture, is applied to enhance image quality.
Our comparative analysis with state-of-the-art methods demonstrates the superior performance of vSHARP in these applications.
arXiv Detail & Related papers (2023-09-18T17:26:22Z) - Generalized Implicit Neural Representation for Efficient MRI Parallel Imaging Reconstruction [16.63720411275398]
This study presents a generalized implicit neural representation (INR)-based framework for MRI PI reconstruction.
The framework's INR model treats fully sampled MR images as a continuous function of spatial coordinates and prior voxel-specific features.
Experiments on publicly available MRI datasets demonstrate the superior performance of the proposed method in reconstructing images at multiple acceleration factors.
arXiv Detail & Related papers (2023-09-12T09:07:03Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Optimization-Based Deep learning methods for Magnetic Resonance Imaging
Reconstruction and Synthesis [0.0]
This dissertation aims to provide advanced nonsmooth variational models (Magnetic Resonance Image) MRI reconstruction, efficient learnable image reconstruction algorithms, and deep learning methods for MRI reconstruction and synthesis.
The first part introduces a novel based deep neural network whose architecture is inspired by proximal gradient descent for a variational model.
The second part is a substantial extension of the preliminary work in the first part by solving the calibration-free fast pMRI reconstruction problem in a discrete-time optimal framework.
The third part aims at developing a generalizable Magnetic Resonance Imaging (MRI) reconstruction method in the metalearning framework.
arXiv Detail & Related papers (2023-03-02T18:59:44Z) - Transformer-empowered Multi-scale Contextual Matching and Aggregation
for Multi-contrast MRI Super-resolution [55.52779466954026]
Multi-contrast super-resolution (SR) reconstruction is promising to yield SR images with higher quality.
Existing methods lack effective mechanisms to match and fuse these features for better reconstruction.
We propose a novel network to address these problems by developing a set of innovative Transformer-empowered multi-scale contextual matching and aggregation techniques.
arXiv Detail & Related papers (2022-03-26T01:42:59Z) - Denoising Diffusion Restoration Models [110.1244240726802]
Denoising Diffusion Restoration Models (DDRM) is an efficient, unsupervised posterior sampling method.
We demonstrate DDRM's versatility on several image datasets for super-resolution, deblurring, inpainting, and colorization.
arXiv Detail & Related papers (2022-01-27T20:19:07Z) - ReconFormer: Accelerated MRI Reconstruction Using Recurrent Transformer [60.27951773998535]
We propose a recurrent transformer model, namely textbfReconFormer, for MRI reconstruction.
It can iteratively reconstruct high fertility magnetic resonance images from highly under-sampled k-space data.
We show that it achieves significant improvements over the state-of-the-art methods with better parameter efficiency.
arXiv Detail & Related papers (2022-01-23T21:58:19Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - Limited-angle tomographic reconstruction of dense layered objects by
dynamical machine learning [68.9515120904028]
Limited-angle tomography of strongly scattering quasi-transparent objects is a challenging, highly ill-posed problem.
Regularizing priors are necessary to reduce artifacts by improving the condition of such problems.
We devised a recurrent neural network (RNN) architecture with a novel split-convolutional gated recurrent unit (SC-GRU) as the building block.
arXiv Detail & Related papers (2020-07-21T11:48:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.