Contextuality of Quantum Error-Correcting Codes
- URL: http://arxiv.org/abs/2502.02553v2
- Date: Tue, 01 Apr 2025 17:30:51 GMT
- Title: Contextuality of Quantum Error-Correcting Codes
- Authors: Derek Khu, Andrew Tanggara, Chao Jin, Kishor Bharti,
- Abstract summary: We prove the equivalence of definitions of contextuality from Abramsky--Brandenburger's sheaf-theoretic framework and Kirby--Love's tree-based approach for the partial closure of Pauli measurement sets.<n>We highlight several protocols for code-switching between stabilizer codes, which admit a universal gate set, are strongly contextual.
- Score: 0.44998333629984877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum error correction is vital for fault-tolerant quantum computation, with deep connections to entanglement, magic, and uncertainty relations. Entanglement, for instance, has driven key advances like surface codes and has deepened our understanding of quantum gravity through holographic quantum codes. While these connections are well-explored, the role of contextuality, a fundamental nonclassical feature of quantum theory, remains unexplored. Notably, Bell nonlocality is a special case of contextuality, and prior works have established contextuality as a key resource for quantum computational advantage. In this work, we establish the first direct link between contextuality and quantum error-correcting codes. Using a sheaf-theoretic framework, we define contextuality for such codes and prove key results on its manifestation. Specifically, we prove the equivalence of definitions of contextuality from Abramsky--Brandenburger's sheaf-theoretic framework and Kirby--Love's tree-based approach for the partial closure of Pauli measurement sets. We present several findings, including the proof of a recent conjecture posed by Kim and Abramsky. Working within the partial closure, we further show that subsystem stabilizer codes with two or more gauge qubits are strongly contextual, while others are noncontextual. As a consequence, we highlight that several protocols for code-switching between stabilizer codes, which admit a universal transversal gate set, are strongly contextual. Our findings reveal a direct connection between contextuality and quantum error correction, offering new insights into the nonclassical resources enabling fault-tolerant quantum computation.
Related papers
- Quantum Information Processing, Sensing and Communications: Their Myths, Realities and Futures [61.25494706587422]
The state-of-the-art, knowledge gaps and future evolution of quantum machine learning are discussed.
We conclude with a set of promising future research ideas in the field of ultimately secure quantum communications.
arXiv Detail & Related papers (2024-12-01T22:28:02Z) - Characterizing Contextuality via Rank Separation with Applications to Cloning [0.0]
Quantum contextuality is a key nonclassical feature essential for understanding advantages in quantum computation and communication.
We introduce a new framework to study contextuality based solely on information processing statistics.
We show that quantum contextuality provides the resource in optimal phase-covariant and universal cloning schemes.
arXiv Detail & Related papers (2024-06-27T17:56:04Z) - A computational test of quantum contextuality, and even simpler proofs of quantumness [43.25018099464869]
We show that an arbitrary contextuality game can be compiled into an operational "test of contextuality" involving a single quantum device.
Our work can be seen as using cryptography to enforce spatial separation within subsystems of a single quantum device.
arXiv Detail & Related papers (2024-05-10T19:30:23Z) - Causality and a possible interpretation of quantum mechanics [2.7398542529968477]
Based on quantum field theory, our work provides a framework that harmoniously integrates relativistic causality, quantum non-locality, and quantum measurement.
We use reduced density matrices to represent the local information of the quantum state and show that the reduced density matrices cannot evolve superluminally.
Unlike recent approaches that focus on causality by introducing new operators to describe detectors, we consider that everything--including detectors, environments, and humans--is composed of the same fundamental fields.
arXiv Detail & Related papers (2024-02-08T07:07:22Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Classical Verification of Quantum Learning [42.362388367152256]
We develop a framework for classical verification of quantum learning.
We propose a new quantum data access model that we call "mixture-of-superpositions" quantum examples.
Our results demonstrate that the potential power of quantum data for learning tasks, while not unlimited, can be utilized by classical agents.
arXiv Detail & Related papers (2023-06-08T00:31:27Z) - Error Correction for Reliable Quantum Computing [0.0]
We study a phenomenon exclusive to the quantum paradigm, known as degeneracy, and its effects on the performance of sparse quantum codes.
We present methods to improve the performance of a specific family of sparse quantum codes in various different scenarios.
arXiv Detail & Related papers (2022-02-17T11:26:52Z) - Experimental investigation of quantum uncertainty relations with
classical shadows [7.675613458661457]
We experimentally investigate quantum uncertainty relations construed with relative entropy of coherence.
We prepare a family of quantum states whose purity can be fully controlled.
Our results indicate the tightness of quantum coherence lower bounds dependents on the reference bases as well as the purity of quantum state.
arXiv Detail & Related papers (2022-02-14T00:26:31Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Quantum Causal Inference in the Presence of Hidden Common Causes: an
Entropic Approach [34.77250498401055]
We put forth a new theoretical framework for merging quantum information science and causal inference by exploiting entropic principles.
We apply our proposed framework to an experimentally relevant scenario of identifying message senders on quantum noisy links.
This approach can lay the foundations of identifying originators of malicious activity on future multi-node quantum networks.
arXiv Detail & Related papers (2021-04-24T22:45:50Z) - Quantum Entropic Causal Inference [30.939150842529052]
We put forth a new theoretical framework for merging quantum information science and causal inference by exploiting entropic principles.
We apply our proposed framework to an experimentally relevant scenario of identifying message senders on quantum noisy links.
arXiv Detail & Related papers (2021-02-23T15:51:34Z) - Formalization of Bohr's contextuality within theory of open quantum
systems [0.0]
Bohr was the first who pointed to contextuality of quantum measurements.
The original Bohr's contextuality, as contextuality of each quantum measurement, was practically forgotten.
This note is applied to formalization of Bohr's contextuality within the the scheme of indirect measurements.
arXiv Detail & Related papers (2021-02-18T06:59:56Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
We consider the setting where the two parties (a classical Alice and a quantum Bob) can communicate only via a classical channel.
We show that it is in general impossible to realize a two-party quantum functionality with black-box simulation in the case of malicious quantum adversaries.
We provide a compiler that takes as input a classical proof of quantum knowledge (PoQK) protocol for a QMA relation R and outputs a zero-knowledge PoQK for R that can be verified by classical parties.
arXiv Detail & Related papers (2020-10-15T17:55:31Z) - Characterising and bounding the set of quantum behaviours in
contextuality scenarios [0.0]
This work defines contextuality scenarios, along with the polytope of general contextual behaviours.
We formulate novel semidefinite programming relaxations for bounding these sets of quantum contextual behaviours.
Most significantly, to circumvent the inadequacy of pure states and projective measurements, we present a novel unitary operator based semidefinite relaxation technique.
arXiv Detail & Related papers (2020-10-12T17:00:07Z) - Using Quantum Metrological Bounds in Quantum Error Correction: A Simple
Proof of the Approximate Eastin-Knill Theorem [77.34726150561087]
We present a proof of the approximate Eastin-Knill theorem, which connects the quality of a quantum error-correcting code with its ability to achieve a universal set of logical gates.
Our derivation employs powerful bounds on the quantum Fisher information in generic quantum metrological protocols.
arXiv Detail & Related papers (2020-04-24T17:58:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.