論文の概要: How scanning probe microscopy can be supported by Artificial Intelligence and quantum computing
- arxiv url: http://arxiv.org/abs/2406.19397v1
- Date: Wed, 20 Mar 2024 12:22:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 22:48:25.124520
- Title: How scanning probe microscopy can be supported by Artificial Intelligence and quantum computing
- Title(参考訳): 走査型プローブ顕微鏡が人工知能と量子コンピューティングによってどのようにサポートされるか
- Authors: Agnieszka Pregowska, Agata Roszkiewicz, Magdalena Osial, Michael Giersig,
- Abstract要約: 我々は,Scanning Probe Microscopy測定をサポートする可能性に注目し,人工知能と量子コンピューティングの応用を強調した。
人工知能は、日常的な作業における実験プロセスの自動化に有効であることが判明した。
人工知能ベースのアルゴリズムと量子コンピューティングの組み合わせは、走査プローブ顕微鏡の実用性を高める大きな可能性を秘めている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We focus on the potential possibilities for supporting Scanning Probe Microscopy measurements, emphasizing the application of Artificial Intelligence, especially Machine Learning as well as quantum computing. It turned out that Artificial Intelligence can be helpful in the experimental processes automation in routine operations, the algorithmic search for good sample regions, and shed light on the structure property relationships. Thus, it contributes to increasing the efficiency and accuracy of optical nanoscopy scanning probes. Moreover, the combination of Artificial Intelligence based algorithms and quantum computing may have a huge potential to increase the practical application of Scanning Probe Microscopy. The limitations were also discussed. Finally, we outline a research path for the improvement of the proposed approach.
- Abstract(参考訳): 我々は、人工知能、特に機械学習、および量子コンピューティングの応用を強調し、走査プローブ顕微鏡計測をサポートする可能性に焦点を当てる。
人工知能は、ルーチン操作の自動化、良いサンプル領域のアルゴリズム探索、構造特性の関係の解明に有効であることが判明した。
したがって、光学顕微鏡走査プローブの効率と精度の向上に寄与する。
さらに、人工知能ベースのアルゴリズムと量子コンピューティングの組み合わせは、走査プローブ顕微鏡の実用性を高める大きな可能性を秘めている。
制限も議論された。
最後に,提案手法の改良に向けた研究の道程について概説する。
関連論文リスト
- Neural auto-designer for enhanced quantum kernels [59.616404192966016]
本稿では,問題固有の量子特徴写像の設計を自動化するデータ駆動型手法を提案する。
私たちの研究は、量子機械学習の進歩におけるディープラーニングの実質的な役割を強調します。
論文 参考訳(メタデータ) (2024-01-20T03:11:59Z) - Higher-order topological kernels via quantum computation [68.8204255655161]
トポロジカルデータ分析(TDA)は、複雑なデータから意味のある洞察を抽出する強力なツールとして登場した。
本稿では,ベッチ曲線の次数増加に基づくBettiカーネルの量子的定義法を提案する。
論文 参考訳(メタデータ) (2023-07-14T14:48:52Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
網膜下注射のための自律型ロボットナビゲーションの枠組みを提案する。
提案手法は,機器のポーズ推定方法,ロボットとi OCTシステム間のオンライン登録,およびインジェクションターゲットへのナビゲーションに適した軌道計画から構成される。
ブタ前眼の精度と再現性について実験を行った。
論文 参考訳(メタデータ) (2023-01-17T21:41:21Z) - Retrieving space-dependent polarization transformations via near-optimal
quantum process tomography [55.41644538483948]
トモグラフィー問題に対する遺伝的および機械学習アプローチの適用について検討する。
ニューラルネットワークベースのスキームは、リアルタイムにキャラクタリゼーションを必要とするアプリケーションにおいて、重要なスピードアップを提供する。
これらの結果は、より一般的な量子プロセスにおけるトモグラフィーアプローチの最適化の基礎となることを期待する。
論文 参考訳(メタデータ) (2022-10-27T11:37:14Z) - Automatic and effective discovery of quantum kernels [43.702574335089736]
量子コンピューティングは、カーネルマシンが量子カーネルを利用してデータ間の類似度を表現できるようにすることで、機械学習モデルを強化することができる。
本稿では,ニューラルアーキテクチャ検索やAutoMLと同じような最適化手法を用いて,異なるアプローチを提案する。
その結果、高エネルギー物理問題に対する我々のアプローチを検証した結果、最良のシナリオでは、手動設計のアプローチに関して、テストの精度を一致または改善できることが示された。
論文 参考訳(メタデータ) (2022-09-22T16:42:14Z) - Bayesian Active Learning for Scanning Probe Microscopy: from Gaussian
Processes to Hypothesis Learning [0.0]
ベイズ能動学習の基本原理と走査型プローブ顕微鏡(SPM)への応用について述べる。
これらのフレームワークは、先行データの使用、スペクトルデータに符号化された特定の機能の発見、実験中に現れる物理法則の探索を可能にする。
論文 参考訳(メタデータ) (2022-05-30T23:01:41Z) - An Automated Scanning Transmission Electron Microscope Guided by Sparse
Data Analytics [0.0]
本稿では,新たに出現するスパースデータ分析によって導かれる閉ループ管楽器制御プラットフォームの設計について論じる。
機械学習によって通知される集中型コントローラが、限られた$a$$priori$知識とタスクベースの識別を組み合わせることで、オンザフライでの実験的な意思決定を駆動する様子を実証する。
論文 参考訳(メタデータ) (2021-09-30T00:25:35Z) - Ultrafast Focus Detection for Automated Microscopy [0.0]
連続的に収集した電子顕微鏡画像に対する高速な焦点検出アルゴリズムを提案する。
本手法は, 従来のコンピュータビジョン技術に適応し, 様々な微細な組織学的特徴を検出する手法である。
アウト・オブ・フォーカス条件をほぼリアルタイムに検出するテストが実施されている。
論文 参考訳(メタデータ) (2021-08-26T22:24:41Z) - Quantum Embedding Search for Quantum Machine Learning [2.7612093695074456]
クエスト」と発音される新しい量子埋め込み探索アルゴリズム(QES)を導入する。
我々は、量子埋め込みの構造と有向多重グラフの表現との接続を確立し、明確に定義された探索空間を実現する。
本稿では,QESによる量子埋め込みアーキテクチャが手動設計より優れていることを実証的に示す,合成とアイリスデータセットに対する提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2021-05-25T11:50:57Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - Machine learning transfer efficiencies for noisy quantum walks [62.997667081978825]
グラフ型と量子系コヒーレンスの両方の要件を見つけるプロセスは自動化可能であることを示す。
この自動化は、特定のタイプの畳み込みニューラルネットワークを使用して、どのネットワークで、どのコヒーレンス要求の量子優位性が可能かを学習する。
我々の結果は、量子実験における利点の実証と、科学的研究と発見の自動化への道を開くために重要である。
論文 参考訳(メタデータ) (2020-01-15T18:36:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。