Instance-Optimal Private Density Estimation in the Wasserstein Distance
- URL: http://arxiv.org/abs/2406.19566v1
- Date: Thu, 27 Jun 2024 22:51:06 GMT
- Title: Instance-Optimal Private Density Estimation in the Wasserstein Distance
- Authors: Vitaly Feldman, Audra McMillan, Satchit Sivakumar, Kunal Talwar,
- Abstract summary: Estimating the density of a distribution from samples is a fundamental problem in statistics.
We study differentially private density estimation in the Wasserstein distance.
- Score: 37.58527481568219
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Estimating the density of a distribution from samples is a fundamental problem in statistics. In many practical settings, the Wasserstein distance is an appropriate error metric for density estimation. For example, when estimating population densities in a geographic region, a small Wasserstein distance means that the estimate is able to capture roughly where the population mass is. In this work we study differentially private density estimation in the Wasserstein distance. We design and analyze instance-optimal algorithms for this problem that can adapt to easy instances. For distributions $P$ over $\mathbb{R}$, we consider a strong notion of instance-optimality: an algorithm that uniformly achieves the instance-optimal estimation rate is competitive with an algorithm that is told that the distribution is either $P$ or $Q_P$ for some distribution $Q_P$ whose probability density function (pdf) is within a factor of 2 of the pdf of $P$. For distributions over $\mathbb{R}^2$, we use a different notion of instance optimality. We say that an algorithm is instance-optimal if it is competitive with an algorithm that is given a constant-factor multiplicative approximation of the density of the distribution. We characterize the instance-optimal estimation rates in both these settings and show that they are uniformly achievable (up to polylogarithmic factors). Our approach for $\mathbb{R}^2$ extends to arbitrary metric spaces as it goes via hierarchically separated trees. As a special case our results lead to instance-optimal private learning in TV distance for discrete distributions.
Related papers
- Statistical-Computational Trade-offs for Density Estimation [60.81548752871115]
We show that for a broad class of data structures their bounds cannot be significantly improved.
This is a novel emphstatistical-computational trade-off for density estimation.
arXiv Detail & Related papers (2024-10-30T15:03:33Z) - Relative-Translation Invariant Wasserstein Distance [82.6068808353647]
We introduce a new family of distances, relative-translation invariant Wasserstein distances ($RW_p$)
We show that $RW_p distances are also real distance metrics defined on the quotient set $mathcalP_p(mathbbRn)/sim$ invariant to distribution translations.
arXiv Detail & Related papers (2024-09-04T03:41:44Z) - Robust Distribution Learning with Local and Global Adversarial Corruptions [17.22168727622332]
We develop an efficient finite-sample algorithm with error bounded by $sqrtvarepsilon k + rho + tildeO(dsqrtkn-1/(k lor 2))$ when $P$ has bounded covariance.
Our efficient procedure relies on a novel trace norm approximation of an ideal yet intractable 2-Wasserstein projection estimator.
arXiv Detail & Related papers (2024-06-10T17:48:36Z) - Optimality in Mean Estimation: Beyond Worst-Case, Beyond Sub-Gaussian,
and Beyond $1+\alpha$ Moments [10.889739958035536]
We introduce a new definitional framework to analyze the fine-grained optimality of algorithms.
We show that median-of-means is neighborhood optimal, up to constant factors.
It is open to find a neighborhood-separated estimator without constant factor slackness.
arXiv Detail & Related papers (2023-11-21T18:50:38Z) - Estimating the Density Ratio between Distributions with High Discrepancy
using Multinomial Logistic Regression [21.758330613138778]
We show that the state-of-the-art density ratio estimators perform poorly on well-separated cases.
We present an alternative method that leverages multi-class classification for density ratio estimation.
arXiv Detail & Related papers (2023-05-01T15:10:56Z) - Energy-Based Sliced Wasserstein Distance [47.18652387199418]
A key component of the sliced Wasserstein (SW) distance is the slicing distribution.
We propose to design the slicing distribution as an energy-based distribution that is parameter-free.
We then derive a novel sliced Wasserstein metric, energy-based sliced Waserstein (EBSW) distance.
arXiv Detail & Related papers (2023-04-26T14:28:45Z) - Simple Binary Hypothesis Testing under Local Differential Privacy and
Communication Constraints [8.261182037130407]
We study simple binary hypothesis testing under both local differential privacy (LDP) and communication constraints.
We qualify our results as either minimax optimal or instance optimal.
arXiv Detail & Related papers (2023-01-09T18:36:49Z) - Linear Optimal Transport Embedding: Provable Wasserstein classification
for certain rigid transformations and perturbations [79.23797234241471]
Discriminating between distributions is an important problem in a number of scientific fields.
The Linear Optimal Transportation (LOT) embeds the space of distributions into an $L2$-space.
We demonstrate the benefits of LOT on a number of distribution classification problems.
arXiv Detail & Related papers (2020-08-20T19:09:33Z) - Fast and Robust Comparison of Probability Measures in Heterogeneous
Spaces [62.35667646858558]
We introduce the Anchor Energy (AE) and Anchor Wasserstein (AW) distances, which are respectively the energy and Wasserstein distances instantiated on such representations.
Our main contribution is to propose a sweep line algorithm to compute AE emphexactly in log-quadratic time, where a naive implementation would be cubic.
We show that AE and AW perform well in various experimental settings at a fraction of the computational cost of popular GW approximations.
arXiv Detail & Related papers (2020-02-05T03:09:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.