論文の概要: Deep Learning-based Depth Estimation Methods from Monocular Image and Videos: A Comprehensive Survey
- arxiv url: http://arxiv.org/abs/2406.19675v1
- Date: Fri, 28 Jun 2024 06:25:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 17:39:39.586270
- Title: Deep Learning-based Depth Estimation Methods from Monocular Image and Videos: A Comprehensive Survey
- Title(参考訳): 単眼画像と映像からの深層学習に基づく深度推定法:総合的調査
- Authors: Uchitha Rajapaksha, Ferdous Sohel, Hamid Laga, Dean Diepeveen, Mohammed Bennamoun,
- Abstract要約: 単一のRGB画像とビデオから深度を推定することは、多くの分野で応用されているため、広く関心を集めている。
過去10年間に500以上のディープラーニングベースの論文が出版されている。
入力と出力のモダリティ、ネットワークアーキテクチャ、学習方法に基づいて、現在の作業を分類するための分類を提供する。
- 参考スコア(独自算出の注目度): 31.414360704020254
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Estimating depth from single RGB images and videos is of widespread interest due to its applications in many areas, including autonomous driving, 3D reconstruction, digital entertainment, and robotics. More than 500 deep learning-based papers have been published in the past 10 years, which indicates the growing interest in the task. This paper presents a comprehensive survey of the existing deep learning-based methods, the challenges they address, and how they have evolved in their architecture and supervision methods. It provides a taxonomy for classifying the current work based on their input and output modalities, network architectures, and learning methods. It also discusses the major milestones in the history of monocular depth estimation, and different pipelines, datasets, and evaluation metrics used in existing methods.
- Abstract(参考訳): 単一のRGB画像とビデオから深度を推定することは、自動運転、3D再構築、デジタルエンターテイメント、ロボット工学など、多くの分野で応用されているため、広く関心を集めている。
過去10年間に500以上のディープラーニングベースの論文が出版され、タスクへの関心が高まりつつあることを示している。
本稿では,既存のディープラーニング手法,その課題,アーキテクチャや監視手法の進化について,包括的調査を行った。
入力と出力のモダリティ、ネットワークアーキテクチャ、学習方法に基づいて、現在の作業を分類するための分類を提供する。
また、単眼深度推定の歴史における主要なマイルストーンと、既存のメソッドで使用されるさまざまなパイプライン、データセット、評価メトリクスについても論じている。
関連論文リスト
- Learning-based Multi-View Stereo: A Survey [55.3096230732874]
MVS(Multi-View Stereo)アルゴリズムは、複雑な環境における正確な再構築を可能にする包括的な3D表現を合成する。
ディープラーニングの成功により、多くの学習ベースのMVS手法が提案され、従来の手法に対して優れたパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-08-27T17:53:18Z) - A Comprehensive Survey on Underwater Image Enhancement Based on Deep Learning [51.7818820745221]
水中画像強調(UIE)はコンピュータビジョン研究において重要な課題である。
多数のUIEアルゴリズムが開発されているにもかかわらず、網羅的で体系的なレビューはいまだに欠落している。
論文 参考訳(メタデータ) (2024-05-30T04:46:40Z) - Deep networks for system identification: a Survey [56.34005280792013]
システム識別は、入力出力データから動的システムの数学的記述を学習する。
同定されたモデルの主な目的は、以前の観測から新しいデータを予測することである。
我々は、フィードフォワード、畳み込み、リカレントネットワークなどの文献で一般的に採用されているアーキテクチャについて論じる。
論文 参考訳(メタデータ) (2023-01-30T12:38:31Z) - Deep Depth Completion: A Survey [26.09557446012222]
我々は、読者が研究動向をよりよく把握し、現在の進歩を明確に理解するのに役立つ総合的な文献レビューを提供する。
ネットワークアーキテクチャ,損失関数,ベンチマークデータセット,学習戦略の設計面から,関連する研究について検討する。
室内および屋外のデータセットを含む,広く使用されている2つのベンチマークデータセットに対して,モデル性能の定量的比較を行った。
論文 参考訳(メタデータ) (2022-05-11T08:24:00Z) - Deep Long-Tailed Learning: A Survey [163.16874896812885]
ディープ・ロングテール・ラーニング(Deep Long-tailed Learning)は、長いテールのクラス分布に追従する多数の画像から、優れたパフォーマンスのディープモデルをトレーニングすることを目的としている。
長い尾を持つクラス不均衡は、現実的な視覚認識タスクにおいて一般的な問題である。
本稿では,近年の長期学習の進歩を包括的に調査する。
論文 参考訳(メタデータ) (2021-10-09T15:25:22Z) - A Comprehensive Survey on Community Detection with Deep Learning [93.40332347374712]
コミュニティは、ネットワーク内の他のコミュニティと異なるメンバーの特徴と接続を明らかにする。
この調査は、最先端の手法の様々なカテゴリをカバーする新しい分類法を考案し、提案する。
ディープニューラルネットワーク(Deep Neural Network)は、畳み込みネットワーク(convolutional network)、グラフアテンションネットワーク( graph attention network)、生成的敵ネットワーク(generative adversarial network)、オートエンコーダ(autoencoder)に分けられる。
論文 参考訳(メタデータ) (2021-05-26T14:37:07Z) - Recent Advances and Trends in Multimodal Deep Learning: A Review [9.11022096530605]
マルチモーダルディープラーニングは、様々なモーダルを使って情報を処理およびリンクできるモデルを作成することを目的としている。
本稿では,画像,ビデオ,テキスト,音声,身体ジェスチャー,表情,生理的信号など,多種類のモダリティに焦点を当てる。
様々なマルチモーダル深層学習応用のきめ細かい分類法が提案され、様々な応用をより深く研究している。
論文 参考訳(メタデータ) (2021-05-24T04:20:45Z) - Deep Image Retrieval: A Survey [21.209884703192735]
深層学習による画像検索に焦点をあて, 深層ネットワーク構造の種類に応じて, 最先端の手法を整理する。
本調査は,カテゴリベースCBIR分野のグローバルな展望を促進することを目的とした,近年の多種多様な手法について考察する。
論文 参考訳(メタデータ) (2021-01-27T09:32:58Z) - Deep Learning based Monocular Depth Prediction: Datasets, Methods and
Applications [31.06326714016336]
RGB画像から深度を推定することで、屋内のローカライゼーション、高さ推定、同時ローカライゼーションとマッピングなど、多くのコンピュータビジョンタスクが容易になる。
近年,深層学習技術の急速な発展により,単眼深度推定が大きな進歩を遂げている。
論文 参考訳(メタデータ) (2020-11-09T01:03:13Z) - A Survey on Text Classification: From Shallow to Deep Learning [83.47804123133719]
過去10年は、ディープラーニングが前例のない成功を収めたために、この分野の研究が急増している。
本稿では,1961年から2021年までの最先端のアプローチを見直し,そのギャップを埋める。
特徴抽出と分類に使用されるテキストとモデルに基づいて,テキスト分類のための分類を作成する。
論文 参考訳(メタデータ) (2020-08-02T00:09:03Z) - A Survey on Deep Learning Techniques for Stereo-based Depth Estimation [30.330599857204344]
RGB画像から深度を推定することは、長年続く不適切な問題である。
ステレオベースの深度推定のためのディープラーニングは、コミュニティから関心を集めている。
この新世代の手法は、性能の大きな飛躍を見せている。
論文 参考訳(メタデータ) (2020-06-01T13:09:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。