Classical Bandit Algorithms for Entanglement Detection in Parameterized Qubit States
- URL: http://arxiv.org/abs/2406.19738v1
- Date: Fri, 28 Jun 2024 08:26:47 GMT
- Title: Classical Bandit Algorithms for Entanglement Detection in Parameterized Qubit States
- Authors: Bharati. K, Vikesh Siddhu, Krishna Jagannathan,
- Abstract summary: Entanglement is a key resource for a wide range of tasks in quantum information and computing.
This paper highlights the potential for employing classical machine learning techniques for quantum entanglement detection.
- Score: 3.5502600490147196
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entanglement is a key resource for a wide range of tasks in quantum information and computing. Thus, verifying availability of this quantum resource is essential. Extensive research on entanglement detection has led to no-go theorems (Lu et al. [Phys. Rev. Lett., 116, 230501 (2016)]) that highlight the need for full state tomography (FST) in the absence of adaptive or joint measurements. Recent advancements, as proposed by Zhu, Teo, and Englert [Phys. Rev. A, 81, 052339, 2010], introduce a single-parameter family of entanglement witness measurements which are capable of conclusively detecting certain entangled states and only resort to FST when all witness measurements are inconclusive. We find a variety of realistic noisy two-qubit quantum states $\mathcal{F}$ that yield conclusive results under this witness family. We solve the problem of detecting entanglement among $K$ quantum states in $\mathcal{F}$, of which $m$ states are entangled, with $m$ potentially unknown. We recognize a structural connection of this problem to the Bad Arm Identification problem in stochastic Multi-Armed Bandits (MAB). In contrast to existing quantum bandit frameworks, we establish a new correspondence tailored for entanglement detection and term it the $(m,K)$-quantum Multi-Armed Bandit. We implement two well-known MAB policies for arbitrary states derived from $\mathcal{F}$, present theoretical guarantees on the measurement/sample complexity and demonstrate the practicality of the policies through numerical simulations. More broadly, this paper highlights the potential for employing classical machine learning techniques for quantum entanglement detection.
Related papers
- Quantum state testing with restricted measurements [30.641152457827527]
We develop an information-theoretic framework that yields unified copy complexity lower bounds for restricted families of non-adaptive measurements.
We demonstrate a separation between these two schemes, showing the power of randomized measurement schemes over fixed ones.
arXiv Detail & Related papers (2024-08-30T17:48:00Z) - The role of shared randomness in quantum state certification with
unentangled measurements [36.19846254657676]
We study quantum state certification using unentangled quantum measurements.
$Theta(d2/varepsilon2)$ copies are necessary and sufficient for state certification.
We develop a unified lower bound framework for both fixed and randomized measurements.
arXiv Detail & Related papers (2024-01-17T23:44:52Z) - $\mathcal{PT}$-symmetric mapping of three states and its implementation on a cloud quantum processor [0.9599644507730107]
We develop a new $mathcalPT$-symmetric approach for mapping three pure qubit states.
We show consistency with the Hermitian case, conservation of average projections on reference vectors, and Quantum Fisher Information.
Our work unlocks new doors for applying $mathcalPT$-symmetry in quantum communication, computing, and cryptography.
arXiv Detail & Related papers (2023-12-27T18:51:33Z) - Measurement-Device-Independent Detection of Beyond-Quantum State [53.64687146666141]
We propose a measurement-device-independent (MDI) test for beyond-quantum state detection.
We discuss the importance of tomographic completeness of the input sets to the detection.
arXiv Detail & Related papers (2023-12-11T06:40:13Z) - Approximation Algorithms for Quantum Max-$d$-Cut [42.248442410060946]
The Quantum Max-$d$-Cut problem involves finding a quantum state that maximizes the expected energy associated with the projector onto the antisymmetric subspace of two, $d$-dimensional qudits over all local interactions.
We develop an algorithm that finds product-state solutions of mixed states with bounded purity that achieve non-trivial performance guarantees.
arXiv Detail & Related papers (2023-09-19T22:53:17Z) - Quantum State Tomography for Matrix Product Density Operators [28.799576051288888]
Reconstruction of quantum states from experimental measurements is crucial for the verification and benchmarking of quantum devices.
Many physical quantum states, such as states generated by noisy, intermediate-scale quantum computers, are usually structured.
We establish theoretical guarantees for the stable recovery of MPOs using tools from compressive sensing and the theory of empirical processes.
arXiv Detail & Related papers (2023-06-15T18:23:55Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - How many mutually unbiased bases are needed to detect bound entangled
states? [1.3544498422625448]
We show that a class of entanglement witnesses composed of mutually unbiased bases can detect bound entanglement if the number of measurements is greater than $d/2+1$.
This is a substantial improvement over other detection methods, requiring significantly fewer resources than either full quantum state tomography or measuring a complete set of $d+1$ MUBs.
arXiv Detail & Related papers (2021-08-02T18:15:11Z) - Unveiling quantum entanglement in many-body systems from partial
information [0.0]
This paper introduces a flexible data-driven entanglement detection technique for uncharacterized quantum many-body states.
It is of immediate relevance to experiments in a quantum advantage regime.
arXiv Detail & Related papers (2021-07-08T16:17:02Z) - Quantifying and controlling entanglement in the quantum magnet
Cs$_2$CoCl$_4$ [0.0]
We implement a model-independent measurement protocol for entanglement based on three entanglement witnesses: one-tangle, two-tangle, and quantum Fisher information (QFI)
We perform high-resolution measurements on Cs$$ClCo$_4$, a close realization of the $S=1/2$ transverse-field XXZ spin chain.
Our results lay the foundation for a general entanglement detection protocol for quantum spin systems.
arXiv Detail & Related papers (2020-10-21T17:34:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.