論文の概要: FootBots: A Transformer-based Architecture for Motion Prediction in Soccer
- arxiv url: http://arxiv.org/abs/2406.19852v1
- Date: Fri, 28 Jun 2024 11:49:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 17:00:05.708542
- Title: FootBots: A Transformer-based Architecture for Motion Prediction in Soccer
- Title(参考訳): FootBots: サッカーにおける動き予測のためのトランスフォーマーベースのアーキテクチャ
- Authors: Guillem Capellera, Luis Ferraz, Antonio Rubio, Antonio Agudo, Francesc Moreno-Noguer,
- Abstract要約: FootBotsは、動作予測と条件付き動作予測に対処するエンコーダ・デコーダベースのアーキテクチャである。
FootBotsは、設定されたアテンションブロックとマルチアテンションブロックデコーダを使用して、時間的および社会的ダイナミクスをキャプチャする。
実際のサッカーデータに対する実証的な結果は、フットボットがモーション予測においてベースラインを上回っていることを示している。
- 参考スコア(独自算出の注目度): 28.32714256545306
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motion prediction in soccer involves capturing complex dynamics from player and ball interactions. We present FootBots, an encoder-decoder transformer-based architecture addressing motion prediction and conditioned motion prediction through equivariance properties. FootBots captures temporal and social dynamics using set attention blocks and multi-attention block decoder. Our evaluation utilizes two datasets: a real soccer dataset and a tailored synthetic one. Insights from the synthetic dataset highlight the effectiveness of FootBots' social attention mechanism and the significance of conditioned motion prediction. Empirical results on real soccer data demonstrate that FootBots outperforms baselines in motion prediction and excels in conditioned tasks, such as predicting the players based on the ball position, predicting the offensive (defensive) team based on the ball and the defensive (offensive) team, and predicting the ball position based on all players. Our evaluation connects quantitative and qualitative findings. https://youtu.be/9kaEkfzG3L8
- Abstract(参考訳): サッカーにおけるモーション予測は、プレーヤーとボールの相互作用から複雑なダイナミクスを捉えることを伴う。
そこで我々は, エンコーダ・デコーダ・トランスフォーメータをベースとしたフットボットを, 等価特性による動作予測と条件付き動作予測に対応させるアーキテクチャとして提案する。
FootBotsは、設定されたアテンションブロックとマルチアテンションブロックデコーダを使用して、時間的および社会的ダイナミクスをキャプチャする。
本評価では,サッカーデータセットと合成データセットの2つのデータセットを利用する。
合成データセットからの洞察は、フットボットの社会的注意機構の有効性と条件付き動作予測の重要性を強調している。
実際のサッカーデータに対する実証的な結果から、フットボットは、ボールの位置に基づいて選手を予測したり、ボールと防御(防御)チームに基づいて攻撃(防御)チームを予測したり、すべての選手に基づいてボールの位置を予測したりといった条件付きタスクにおいて、ベースラインを上回り、卓越していることが示された。
我々の評価は量的および質的な結果と結びついている。
https://youtu.be/9kaEkfzG3L8
関連論文リスト
- Pose2Trajectory: Using Transformers on Body Pose to Predict Tennis Player's Trajectory [6.349503549199403]
テニス選手の身体関節データとボール位置から導かれるシーケンスとして,選手の将来の軌跡を予測するPose2Trajectoryを提案する。
我々は,ボール位置を持つ選手の関節および軌道情報に基づいて訓練されたエンコーダ・デコーダ変換器アーキテクチャを用いる。
複数のビデオから高品質なデータセットを生成し、物体検出と人間のポーズ推定手法を用いてテニス選手の動き予測を支援する。
論文 参考訳(メタデータ) (2024-11-07T07:50:58Z) - MatchTime: Towards Automatic Soccer Game Commentary Generation [52.431010585268865]
観客の視聴体験を改善するために,自動サッカーゲーム解説モデルの構築を検討する。
まず、既存のデータセットでよく見られるビデオテキストのミスアライメントを観察し、49試合のタイムスタンプを手動でアノテートする。
第2に,既存のデータセットを自動的に修正・フィルタリングするマルチモーダル時間アライメントパイプラインを提案する。
第3に、キュレートされたデータセットに基づいて、MatchVoiceという自動コメント生成モデルをトレーニングします。
論文 参考訳(メタデータ) (2024-06-26T17:57:25Z) - Exploring 3D Human Pose Estimation and Forecasting from the Robot's Perspective: The HARPER Dataset [52.22758311559]
本研究では,ユーザとスポット間のダイアドインタラクションにおける3次元ポーズ推定と予測のための新しいデータセットであるHARPERを紹介する。
キーノーベルティは、ロボットの視点、すなわちロボットのセンサーが捉えたデータに焦点を当てることである。
HARPERの基盤となるシナリオには15のアクションが含まれており、そのうち10つはロボットとユーザの間の物理的接触を含んでいる。
論文 参考訳(メタデータ) (2024-03-21T14:53:50Z) - Engineering Features to Improve Pass Prediction in Soccer Simulation 2D
Games [0.0]
サッカーシミュレーション2D(英: Soccer Simulation 2D)は、2次元の実際のサッカーゲームのシミュレーションである。
我々は,Deep Neural Networks (DNN) とRandom Forest (RF) を用いたサッカー2Dプレーヤーのパス動作のモデル化を試みた。
RoboCup 2019の6つのトップチームに対して、トレーニングされたモデルのパフォーマンスを評価する。
論文 参考訳(メタデータ) (2024-01-07T08:01:25Z) - Classifying Soccer Ball-on-Goal Position Through Kicker Shooting Action [1.3887779684720984]
本研究は、シューターの蹴りを観察することで、サッカーフリーキック後のボールの方向を正確に予測できるかどうかを論じる。
我々のアプローチは、ヒューマンアクション認識(HAR)埋め込みとコンテキスト情報を統合するモデルを開発するためにニューラルネットワークを活用することである。
その結果,2つの主要なBoGPクラス(左右)を考える場合,69.1%の精度が得られた。
論文 参考訳(メタデータ) (2023-12-23T12:11:38Z) - Passing Heatmap Prediction Based on Transformer Model and Tracking Data [0.0]
本研究では,パスの潜在的な終端位置を予測できる新しいディープラーニングネットワークアーキテクチャを提案する。
28,000回以上のイベントを解析すると、0.7以上のTop-1精度で堅牢な予測が達成される。
また、この予測に基づいて、ピッチコントロールとパスオプションをよりよく理解することで、選手のオフボール運動が防御性能に与える影響を測定することができる。
論文 参考訳(メタデータ) (2023-09-04T11:14:22Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
ロボット工学のための自己教師型感覚運動器事前学習手法を提案する。
我々のモデルはRTTと呼ばれ、センサモレータトークンのシーケンスで動作するトランスフォーマーである。
感覚運動の事前学習は、ゼロからトレーニングを一貫して上回り、優れたスケーリング特性を持ち、さまざまなタスク、環境、ロボット間での移動を可能にしている。
論文 参考訳(メタデータ) (2023-06-16T17:58:10Z) - Evaluation of creating scoring opportunities for teammates in soccer via
trajectory prediction [7.688133652295848]
実際の動作と軌道予測による参照動作を比較することで,オフボールスコアリングの機会を創出する選手を評価する。
検証のために,プロサッカーリーグのチーム全試合の年間給与,ゴール,評価との関係を検討した。
提案手法は,ボールのない選手がチームメイトに得点率を与えるための指標として有効であることが示唆された。
論文 参考訳(メタデータ) (2022-06-04T03:58:37Z) - SoccerNet-Tracking: Multiple Object Tracking Dataset and Benchmark in
Soccer Videos [62.686484228479095]
本稿では,各30の200列からなる複数物体追跡のための新しいデータセットを提案する。
データセットは、バウンディングボックスとトラックレットIDで完全に注釈付けされている。
分析の結果,サッカービデオにおける複数の選手,審判,ボール追跡が解決されるには程遠いことがわかった。
論文 参考訳(メタデータ) (2022-04-14T12:22:12Z) - Future Frame Prediction for Robot-assisted Surgery [57.18185972461453]
本稿では,ロボット手術用ビデオシーケンスにおけるフレーム予測のためのtpg-vaeモデルを提案する。
コンテンツ配信に加えて、私たちのモデルは、手術ツールの小さな動きを処理するために斬新な運動分布を学習します。
論文 参考訳(メタデータ) (2021-03-18T15:12:06Z) - Game Plan: What AI can do for Football, and What Football can do for AI [83.79507996785838]
予測的および規範的フットボール分析は、統計学習、ゲーム理論、コンピュータビジョンの交差点における新たな発展と進歩を必要とする。
フットボール分析は、サッカー自体のゲームを変えるだけでなく、この領域がAIの分野で何を意味するのかという観点からも、非常に価値の高いゲームチェンジャーであることを示す。
論文 参考訳(メタデータ) (2020-11-18T10:26:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。