Automated Web-Based Malaria Detection System with Machine Learning and Deep Learning Techniques
- URL: http://arxiv.org/abs/2407.00120v1
- Date: Thu, 27 Jun 2024 16:50:36 GMT
- Title: Automated Web-Based Malaria Detection System with Machine Learning and Deep Learning Techniques
- Authors: Abraham G Taye, Sador Yemane, Eshetu Negash, Yared Minwuyelet, Moges Abebe, Melkamu Hunegnaw Asmare,
- Abstract summary: Malaria parasites pose a significant global health burden, causing widespread suffering and mortality.
We formulate a deep learning technique for malaria-infected cell classification using traditional CNNs and transfer learning models.
The system can be accessed through a web interface, where users can upload blood smear images for malaria detection.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Malaria parasites pose a significant global health burden, causing widespread suffering and mortality. Detecting malaria infection accurately is crucial for effective treatment and control. However, existing automated detection techniques have shown limitations in terms of accuracy and generalizability. Many studies have focused on specific features without exploring more comprehensive approaches. In our case, we formulate a deep learning technique for malaria-infected cell classification using traditional CNNs and transfer learning models notably VGG19, InceptionV3, and Xception. The models were trained using NIH datasets and tested using different performance metrics such as accuracy, precision, recall, and F1-score. The test results showed that deep CNNs achieved the highest accuracy -- 97%, followed by Xception with an accuracy of 95%. A machine learning model SVM achieved an accuracy of 83%, while an Inception-V3 achieved an accuracy of 94%. Furthermore, the system can be accessed through a web interface, where users can upload blood smear images for malaria detection.
Related papers
- A Hybrid Feature Fusion Deep Learning Framework for Leukemia Cancer Detection in Microscopic Blood Sample Using Gated Recurrent Unit and Uncertainty Quantification [1.024113475677323]
Leukemia is diagnosed by analyzing blood and bone marrow smears under a microscope, with additional cytochemical tests for confirmation.
Deep learning has provided advanced methods for classifying microscopic smear images, aiding in the detection of leukemic cells.
In this research, hybrid deep learning models were implemented to classify Acute lymphoblastic leukemia (ALL)
The proposed method achieved a remarkable detection accuracy rate of 100% on the ALL-IDB1 dataset, 98.07% on the ALL-IDB2 dataset, and 98.64% on the combined dataset.
arXiv Detail & Related papers (2024-10-18T15:23:34Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Malaria Cell Detection Using Deep Neural Networks [1.1237179306040028]
Malaria remains one of the most pressing public health concerns globally.
Traditional diagnostic methods, such as microscopic examination of blood smears, are labor-intensive.
This project aims to automate the detection of malaria-infected cells using a deep learning approach.
arXiv Detail & Related papers (2024-06-28T15:44:55Z) - Explainable AI in Diagnosing and Anticipating Leukemia Using Transfer
Learning Method [0.0]
This research paper focuses on Acute Lymphoblastic Leukemia (ALL), a form of blood cancer prevalent in children and teenagers.
It proposes an automated detection approach using computer-aided diagnostic (CAD) models, leveraging deep learning techniques.
The proposed method achieved an impressive 98.38% accuracy, outperforming other tested models.
arXiv Detail & Related papers (2023-12-01T10:37:02Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
COVID-19 pandemic has spread rapidly and caused a shortage of global medical resources.
CNN has been widely utilized and verified in analyzing medical images.
arXiv Detail & Related papers (2022-03-24T02:09:41Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Attack-agnostic Adversarial Detection on Medical Data Using Explainable
Machine Learning [0.0]
We propose a model agnostic explainability-based method for the accurate detection of adversarial samples on two datasets.
On the MIMIC-III and Henan-Renmin EHR datasets, we report a detection accuracy of 77% against the Longitudinal Adrial Attack.
On the MIMIC-CXR dataset, we achieve an accuracy of 88%; significantly improving on the state of the art of adversarial detection in both datasets by over 10% in all settings.
arXiv Detail & Related papers (2021-05-05T10:01:53Z) - Active learning for medical code assignment [55.99831806138029]
We demonstrate the effectiveness of Active Learning (AL) in multi-label text classification in the clinical domain.
We apply a set of well-known AL methods to help automatically assign ICD-9 codes on the MIMIC-III dataset.
Our results show that the selection of informative instances provides satisfactory classification with a significantly reduced training set.
arXiv Detail & Related papers (2021-04-12T18:11:17Z) - Uncertainty-Aware Semi-supervised Method using Large Unlabelled and
Limited Labeled COVID-19 Data [14.530328267425638]
We propose a Semi-supervised Classification using Limited Labelled Data (SCLLD) for automated COVID-19 detection.
The proposed system is trained using 10,000 CT scans collected from Omid hospital.
Our method significantly outperforms the supervised training of Convolutional Neural Network (CNN) in case labelled training data is scarce.
arXiv Detail & Related papers (2021-02-12T08:20:20Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.