論文の概要: Multi-Species Object Detection in Drone Imagery for Population Monitoring of Endangered Animals
- arxiv url: http://arxiv.org/abs/2407.00127v1
- Date: Fri, 28 Jun 2024 03:03:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 06:20:13.824984
- Title: Multi-Species Object Detection in Drone Imagery for Population Monitoring of Endangered Animals
- Title(参考訳): 絶滅危惧種の個体群モニタリングのためのドローン画像における多種オブジェクト検出
- Authors: Sowmya Sankaran,
- Abstract要約: 本研究は,動物種を正確に数えるために,ドローン画像の微調整対象検出モデルに焦点を当てた。
私たちは30の異なるモデルをトレーニングし、最大のモデルは4370万のパラメータと365のレイヤを持っていた。
我々はこれらのモデルをJetson Orin Nano上に展開し、ドローンで容易に推測できる低消費電力リアルタイム種検出のデモを行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Animal populations worldwide are rapidly declining, and a technology that can accurately count endangered species could be vital for monitoring population changes over several years. This research focused on fine-tuning object detection models for drone images to create accurate counts of animal species. Hundreds of images taken using a drone and large, openly available drone-image datasets were used to fine-tune machine learning models with the baseline YOLOv8 architecture. We trained 30 different models, with the largest having 43.7 million parameters and 365 layers, and used hyperparameter tuning and data augmentation techniques to improve accuracy. While the state-of-the-art YOLOv8 baseline had only 0.7% accuracy on a dataset of safari animals, our models had 95% accuracy on the same dataset. Finally, we deployed the models on the Jetson Orin Nano for demonstration of low-power real-time species detection for easy inference on drones.
- Abstract(参考訳): 世界中の動物の個体数は急速に減少しており、絶滅危惧種を正確に数えることができる技術は、数年にわたって個体数の変化を監視するのに欠かせない可能性がある。
本研究は,動物種を正確に数えるために,ドローン画像の微調整対象検出モデルに焦点を当てた。
ドローンを使って撮影した何百もの画像と、公開可能な大規模なドローン画像データセットを使用して、ベースラインのYOLOv8アーキテクチャで機械学習モデルを微調整した。
最大で4370万のパラメータと365のレイヤを持つ30の異なるモデルをトレーニングし、ハイパーパラメータチューニングとデータ拡張技術を使用して精度を向上しました。
最新のYOLOv8ベースラインはサファリ動物のデータセットでは0.7%の精度しか得られなかったが、我々のモデルは同じデータセットでは95%の精度であった。
最後に、Jetson Orin Nanoにモデルをデプロイし、ドローンでの推論を容易にするために、低消費電力のリアルタイム種検出のデモを行いました。
関連論文リスト
- DroBoost: An Intelligent Score and Model Boosting Method for Drone Detection [1.2564343689544843]
ドローン検出は、画像の可視性や品質が好ましくないような、困難な物体検出タスクである。
私たちの仕事は、いくつかの改善を組み合わせることで、以前のアプローチを改善します。
提案された技術は、Drone vs. Bird Challengeで1位を獲得した。
論文 参考訳(メタデータ) (2024-06-30T20:49:56Z) - Drone-type-Set: Drone types detection benchmark for drone detection and tracking [0.6294091730968154]
本稿では,認識された物体検出モデルとの比較とともに,各種ドローンのデータセットを提供する。
異なるモデルの実験結果と各手法の記載が提供される。
論文 参考訳(メタデータ) (2024-05-16T18:56:46Z) - TransVisDrone: Spatio-Temporal Transformer for Vision-based
Drone-to-Drone Detection in Aerial Videos [57.92385818430939]
視覚的フィードを用いたドローンからドローンへの検知は、ドローンの衝突の検出、ドローンの攻撃の検出、他のドローンとの飛行の調整など、重要な応用がある。
既存の手法は計算コストがかかり、非エンドツーエンドの最適化に追随し、複雑なマルチステージパイプラインを持つため、エッジデバイス上でのリアルタイムデプロイメントには適さない。
計算効率を向上したエンドツーエンドのソリューションを提供する,シンプルで効果的なフレームワークであるitTransVisDroneを提案する。
論文 参考訳(メタデータ) (2022-10-16T03:05:13Z) - Deep object detection for waterbird monitoring using aerial imagery [56.1262568293658]
本研究では,商用ドローンで収集した空中画像を用いて,水鳥の正確な検出,数え,監視に使用できる深層学習パイプラインを提案する。
畳み込み型ニューラルネットワークを用いた物体検出装置を用いて,テキサス沿岸の植民地性営巣島でよく見られる16種類の水鳥を検出できることを示す。
論文 参考訳(メタデータ) (2022-10-10T17:37:56Z) - Sequence Models for Drone vs Bird Classification [2.294014185517203]
ドローンのコストが減少し、ドローン技術が向上するにつれ、ドローン検出はオブジェクト検出において重要な課題となっている。
コントラストが弱く、距離が長く、視界が低い場合、遠方のドローンを検知することは困難である。
検出されたドローントラックの偽陽性比を低減するために,いくつかのシーケンス分類アーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-07-21T11:00:44Z) - Small Object Detection using Deep Learning [0.28675177318965034]
提案システムは,高速物体検出モデル(YOLO)のフレーバーであるTiny YOLOv3(Tiny YOLOv3)を構築・使用した。
提案したアーキテクチャは、以前のYOLOバージョンに比べて大幅に性能が向上している。
論文 参考訳(メタデータ) (2022-01-10T09:58:25Z) - A dataset for multi-sensor drone detection [67.75999072448555]
近年,小型・遠隔操作無人航空機(UAV)の使用が増加している。
ドローン検出に関するほとんどの研究は、取得デバイスの種類、ドローンの種類、検出範囲、データセットを特定することに失敗している。
我々は、赤外線および可視ビデオとオーディオファイルを含むドローン検出のための注釈付きマルチセンサーデータベースにコントリビュートする。
論文 参考訳(メタデータ) (2021-11-02T20:52:03Z) - Scarce Data Driven Deep Learning of Drones via Generalized Data
Distribution Space [12.377024173799631]
GAN(Generative Adversarial Network)を通じて、ドローンデータの一般的な分布を理解することで、不足したデータを取得して、迅速かつ正確な学習を実現することができることを示す。
我々は、実際のドローン画像とコンピュータ支援設計のシミュレーション画像の両方を含むドローン画像データセット上で、我々の結果を実証した。
論文 参考訳(メタデータ) (2021-08-18T17:07:32Z) - AcinoSet: A 3D Pose Estimation Dataset and Baseline Models for Cheetahs
in the Wild [51.35013619649463]
我々はAcinoSetと呼ばれる野生のフリーランニングチーターの広範なデータセットを提示する。
データセットには、119,490フレームのマルチビュー同期高速ビデオ映像、カメラキャリブレーションファイル、7,588フレームが含まれている。
また、結果の3D軌道、人間チェックされた3D地上真実、およびデータを検査するインタラクティブツールも提供される。
論文 参考訳(メタデータ) (2021-03-24T15:54:11Z) - Automatic image-based identification and biomass estimation of
invertebrates [70.08255822611812]
時間を要する分類と分類は、どれだけの昆虫を処理できるかに強い制限を課す。
我々は、人間の専門家による分類と識別の標準的な手動アプローチを、自動画像ベース技術に置き換えることを提案する。
分類タスクには最先端のResnet-50とInceptionV3 CNNを使用する。
論文 参考訳(メタデータ) (2020-02-05T21:38:57Z) - Detection and Tracking Meet Drones Challenge [131.31749447313197]
本稿では、オブジェクト検出・追跡データセットとベンチマークのレビューを行い、手動アノテーションによる大規模ドローンによるオブジェクト検出・追跡データセットの収集の課題について論じる。
当社のVisDroneデータセットは、中国北部から南部にかけての14の都市部と郊外部で収集されたものです。
本稿では,ドローンにおける大規模物体検出・追跡の現場の現状を詳細に分析し,今後の方向性を提案するとともに,課題を結論づける。
論文 参考訳(メタデータ) (2020-01-16T00:11:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。