Graph Neural Networks for Gut Microbiome Metaomic data: A preliminary work
- URL: http://arxiv.org/abs/2407.00142v1
- Date: Fri, 28 Jun 2024 15:53:36 GMT
- Title: Graph Neural Networks for Gut Microbiome Metaomic data: A preliminary work
- Authors: Christopher Irwin, Flavio Mignone, Stefania Montani, Luigi Portinale,
- Abstract summary: We aim to derive meaningful representations of individual gut microbiomes using graph neural networks (GNNs)
The representation learnt from the encoder are then used to train a model for phenotype prediction such as Inflammatory Bowel Disease (IBD)
- Score: 0.47248250311484113
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The gut microbiome, crucial for human health, presents challenges in analyzing its complex metaomic data due to high dimensionality and sparsity. Traditional methods struggle to capture its intricate relationships. We investigate graph neural networks (GNNs) for this task, aiming to derive meaningful representations of individual gut microbiomes. Unlike methods relying solely on taxa abundance, we directly leverage phylogenetic relationships, in order to obtain a generalized encoder for taxa networks. The representation learnt from the encoder are then used to train a model for phenotype prediction such as Inflammatory Bowel Disease (IBD).
Related papers
- The Heterophilic Graph Learning Handbook: Benchmarks, Models, Theoretical Analysis, Applications and Challenges [101.83124435649358]
Homophily principle, ie nodes with the same labels or similar attributes are more likely to be connected.
Recent work has identified a non-trivial set of datasets where GNN's performance compared to the NN's is not satisfactory.
arXiv Detail & Related papers (2024-07-12T18:04:32Z) - Graph Representation Learning Strategies for Omics Data: A Case Study on Parkinson's Disease [13.630617713928197]
Graph neural networks have emerged as promising alternatives to classical statistical and machine learning methods.
This study evaluates various graph representation learning models for case-control classification.
We compare topologies derived from sample similarity networks and molecular interaction networks, including protein-protein and metabolite-metabolite interactions.
arXiv Detail & Related papers (2024-06-20T16:06:39Z) - Injecting Hierarchical Biological Priors into Graph Neural Networks for Flow Cytometry Prediction [1.7709249262395883]
This work explores injecting hierarchical prior knowledge into graph neural networks (GNNs) for single-cell multi-class classification of cellular data.
We propose our hierarchical plug-in method to be applied to several GNN models, namely, FCHC-GNN, and effectively designed to capture neighborhood information crucial for single-cell FC domain.
arXiv Detail & Related papers (2024-05-28T18:24:16Z) - Tertiary Lymphoid Structures Generation through Graph-based Diffusion [54.37503714313661]
In this work, we leverage state-of-the-art graph-based diffusion models to generate biologically meaningful cell-graphs.
We show that the adopted graph diffusion model is able to accurately learn the distribution of cells in terms of their tertiary lymphoid structures (TLS) content.
arXiv Detail & Related papers (2023-10-10T14:37:17Z) - Graph data modelling for outcome prediction in oropharyngeal cancer
patients [38.37247384790338]
Graph neural networks (GNNs) are becoming increasingly popular in the medical domain for the tasks of disease classification and outcome prediction.
We propose a patient hypergraph network (PHGN) which has been investigated in an inductive learning setup for binary outcome prediction in oropharyngeal cancer (OPC) patients.
arXiv Detail & Related papers (2023-10-04T16:09:35Z) - Compact & Capable: Harnessing Graph Neural Networks and Edge Convolution
for Medical Image Classification [0.0]
We introduce a novel model that combines GNNs and edge convolution, leveraging the interconnectedness of RGB channel feature values to strongly represent connections between crucial graph nodes.
Our proposed model performs on par with state-of-the-art Deep Neural Networks (DNNs) but does so with 1000 times fewer parameters, resulting in reduced training time and data requirements.
arXiv Detail & Related papers (2023-07-24T13:39:21Z) - Predicting Biomedical Interactions with Probabilistic Model Selection
for Graph Neural Networks [5.156812030122437]
Current biological networks are noisy, sparse, and incomplete. Experimental identification of such interactions is both time-consuming and expensive.
Deep graph neural networks have shown their effectiveness in modeling graph-structured data and achieved good performance in biomedical interaction prediction.
Our proposed method enables the graph convolutional networks to dynamically adapt their depths to accommodate an increasing number of interactions.
arXiv Detail & Related papers (2022-11-22T20:44:28Z) - RandomSCM: interpretable ensembles of sparse classifiers tailored for
omics data [59.4141628321618]
We propose an ensemble learning algorithm based on conjunctions or disjunctions of decision rules.
The interpretability of the models makes them useful for biomarker discovery and patterns discovery in high dimensional data.
arXiv Detail & Related papers (2022-08-11T13:55:04Z) - Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling
Model [64.29487107585665]
Graph representation learning techniques on brain functional networks can facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
Here, we propose an interpretable hierarchical signed graph representation learning model to extract graph-level representations from brain functional networks.
In order to further improve the model performance, we also propose a new strategy to augment functional brain network data for contrastive learning.
arXiv Detail & Related papers (2022-07-14T20:03:52Z) - Graph-in-Graph (GiG): Learning interpretable latent graphs in
non-Euclidean domain for biological and healthcare applications [52.65389473899139]
Graphs are a powerful tool for representing and analyzing unstructured, non-Euclidean data ubiquitous in the healthcare domain.
Recent works have shown that considering relationships between input data samples have a positive regularizing effect for the downstream task.
We propose Graph-in-Graph (GiG), a neural network architecture for protein classification and brain imaging applications.
arXiv Detail & Related papers (2022-04-01T10:01:37Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.