論文の概要: Evaluating Human Alignment and Model Faithfulness of LLM Rationale
- arxiv url: http://arxiv.org/abs/2407.00219v1
- Date: Fri, 28 Jun 2024 20:06:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 06:00:32.382553
- Title: Evaluating Human Alignment and Model Faithfulness of LLM Rationale
- Title(参考訳): LLMのアライメント評価とモデル忠実度
- Authors: Mohsen Fayyaz, Fan Yin, Jiao Sun, Nanyun Peng,
- Abstract要約: 帰属的有理は帰属的有理数よりも人称有理数とよく一致していることを示す。
さらに,従来の研究で特定されたプロンプトベース手法の忠実度制限は,その崩壊予測と関係があることが示唆された。
- 参考スコア(独自算出の注目度): 66.75309523854476
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study how well large language models (LLMs) explain their generations with rationales -- a set of tokens extracted from the input texts that reflect the decision process of LLMs. We examine LLM rationales extracted with two methods: 1) attribution-based methods that use attention or gradients to locate important tokens, and 2) prompting-based methods that guide LLMs to extract rationales using prompts. Through extensive experiments, we show that prompting-based rationales align better with human-annotated rationales than attribution-based rationales, and demonstrate reasonable alignment with humans even when model performance is poor. We additionally find that the faithfulness limitations of prompting-based methods, which are identified in previous work, may be linked to their collapsed predictions. By fine-tuning these models on the corresponding datasets, both prompting and attribution methods demonstrate improved faithfulness. Our study sheds light on more rigorous and fair evaluations of LLM rationales, especially for prompting-based ones.
- Abstract(参考訳): 我々は,LLMの決定過程を反映した入力テキストから抽出されたトークンの集合である,大言語モデル(LLM)が,それらの世代を合理的にどのように説明するかを考察する。
2つの方法により抽出されたLCMの有理性について検討する。
1)重要なトークンを見つけるために注意または勾配を使用する属性に基づく方法
2) LLM を誘導するプロンプトベースの手法は,プロンプトを用いて有理性を抽出する。
より広範な実験により,帰属的理性は帰属的理性よりも人間の注釈的理性と整合し,モデル性能が劣った場合でも人間との合理的な整合性を示す。
さらに,従来の研究で特定されたプロンプトベース手法の忠実度制限は,その崩壊予測と関係があることが示唆された。
これらのモデルを対応するデータセットに微調整することで、帰属法と帰属法の両方が改善された忠実性を示す。
本研究は, LLM理論の厳密かつ公平な評価, 特にプロンプトに基づく評価に光を当てている。
関連論文リスト
- LLMs are Biased Evaluators But Not Biased for Retrieval Augmented Generation [28.61326111959728]
大規模言語モデル(LLM)は評価タスク、特に優先的に評価し、自己生成したコンテンツを好む場合に重大なバイアスを示す。
本研究では,この知識ギャップを,検索強化世代(RAG)フレームワークの2つの重要なフェーズをシミュレートすることによって解決する。
以上の結果とは対照的に,RAGフレームワークに有意な自己選好効果は認められなかった。
論文 参考訳(メタデータ) (2024-10-28T08:32:09Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
大規模言語モデル(LLM)は、様々なベンチマークで人間レベルの精度に到達し、さらに超えることができるが、不正確な応答における過度な自信は、依然として十分に文書化された障害モードである。
本稿では,LLMの不確実性を測定するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-05T16:35:30Z) - Evaluating Interventional Reasoning Capabilities of Large Language Models [58.52919374786108]
大規模言語モデル(LLM)は、システムの異なる部分への介入の下で因果効果を推定することができる。
LLMが介入に応じてデータ生成プロセスの知識を正確に更新できるかどうかを実証分析して評価する。
我々は、様々な因果グラフ(例えば、コンバウンディング、仲介)と変数タイプにまたがるベンチマークを作成し、介入に基づく推論の研究を可能にする。
論文 参考訳(メタデータ) (2024-04-08T14:15:56Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
本稿では,新しい評価手法SQC-Scoreを提案する。
主観的質問訂正の原則に着想を得て,新しい評価手法SQC-Scoreを提案する。
3つの情報抽出タスクの結果から,SQC-Scoreは基準値よりもアノテータの方が好ましいことが示された。
論文 参考訳(メタデータ) (2024-04-04T15:36:53Z) - Comparing Inferential Strategies of Humans and Large Language Models in Deductive Reasoning [25.732397636695882]
大規模言語モデル(LLM)では,人間の観察と類似した推論パターンが示される。
我々の研究は、モデルの構造と規模が、その好む推論方法に大きく影響していることを示します。
論文 参考訳(メタデータ) (2024-02-20T12:58:14Z) - LLMs for Relational Reasoning: How Far are We? [8.840750655261251]
大規模言語モデル(LLM)は、下流タスクで最先端のパフォーマンスを達成することで、多くの領域に革命をもたらした。
近年の取り組みにより,LSMは逐次決定問題の解決に乏しいことが示されている。
論文 参考訳(メタデータ) (2024-01-17T08:22:52Z) - LogicAsker: Evaluating and Improving the Logical Reasoning Ability of Large Language Models [63.14196038655506]
大規模言語モデル(LLM)の論理的推論能力を評価・拡張するための新しいアプローチであるLogicAskerを紹介する。
提案手法は, LLMが論理規則を学習する際の大きなギャップを明らかにし, 異なるモデル間で29%から90%の推論失敗を識別する。
GPT-4oのようなモデルにおける論理的推論を最大5%向上させることで、これらの知見を活用して、ターゲットとなる実演例と微調整データを構築した。
論文 参考訳(メタデータ) (2024-01-01T13:53:53Z) - A Closer Look at the Self-Verification Abilities of Large Language Models in Logical Reasoning [73.77088902676306]
論理的推論の文脈において,大規模言語モデル(LLM)の自己検証能力について詳しく検討する。
本研究の主目的は,既存のLCMが誤った推論手順を正確に識別するのに苦労し,自己検証法の有効性を保証できないことにある。
論文 参考訳(メタデータ) (2023-11-14T07:13:10Z) - FELM: Benchmarking Factuality Evaluation of Large Language Models [40.78878196872095]
本稿では,Felmと呼ばれる大規模言語モデルのファクチュアリティ評価のためのベンチマークを紹介する。
我々は,大規模言語モデルから生成された応答を収集し,微粒な方法で事実ラベルを注釈付けする。
その結果,検索は事実性評価に役立つが,現在のLCMは事実の誤りを忠実に検出するには不十分であることがわかった。
論文 参考訳(メタデータ) (2023-10-01T17:37:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。