論文の概要: A Study on Effect of Reference Knowledge Choice in Generating Technical Content Relevant to SAPPhIRE Model Using Large Language Model
- arxiv url: http://arxiv.org/abs/2407.00396v1
- Date: Sat, 29 Jun 2024 10:46:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 03:25:29.409237
- Title: A Study on Effect of Reference Knowledge Choice in Generating Technical Content Relevant to SAPPhIRE Model Using Large Language Model
- Title(参考訳): 大規模言語モデルを用いたSAPPhIREモデルに関連する技術コンテンツ生成における参照知識選択の効果に関する研究
- Authors: Kausik Bhattacharya, Anubhab Majumder, Amaresh Chakrabarti,
- Abstract要約: 本研究では, 因果関係のSAPPhIREモデルに対して, 技術的内容の正確な生成方法について検討した。
この研究の結果は、特定の技術システムのSAPPhIREモデルを生成するためのソフトウェアサポートツールを構築するために使用される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Representation of systems using the SAPPhIRE model of causality can be an inspirational stimulus in design. However, creating a SAPPhIRE model of a technical or a natural system requires sourcing technical knowledge from multiple technical documents regarding how the system works. This research investigates how to generate technical content accurately relevant to the SAPPhIRE model of causality using a Large Language Model, also called LLM. This paper, which is the first part of the two-part research, presents a method for hallucination suppression using Retrieval Augmented Generating with LLM to generate technical content supported by the scientific information relevant to a SAPPhIRE con-struct. The result from this research shows that the selection of reference knowledge used in providing context to the LLM for generating the technical content is very important. The outcome of this research is used to build a software support tool to generate the SAPPhIRE model of a given technical system.
- Abstract(参考訳): 因果関係のSAPPhIREモデルを用いたシステム表現は、設計におけるインスピレーションの刺激となる。
しかし、技術または自然システムのSAPPhIREモデルを作成するには、システムの動作に関する複数の技術資料から技術的知識を抽出する必要がある。
本研究では,LLM(Large Language Model)を用いて,SAPPhIREモデルの因果関係に正確な技術的内容を生成する方法について検討する。
本稿では,SAPPhIREコンストラクタに関する科学的情報に支えられた技術内容を生成するために,LLMを用いた検索拡張生成を用いた幻覚抑制手法を提案する。
本研究の結果から,技術コンテンツを生成するためのLLMにコンテキストを提供する上で使用される参照知識の選択が非常に重要であることが示唆された。
この研究の結果は、特定の技術システムのSAPPhIREモデルを生成するためのソフトウェアサポートツールを構築するために使用される。
関連論文リスト
- Automating Knowledge Discovery from Scientific Literature via LLMs: A Dual-Agent Approach with Progressive Ontology Prompting [59.97247234955861]
LLM-Duoという,プログレッシブプロンプトアルゴリズムとデュアルエージェントシステムを組み合わせた,大規模言語モデル(LLM)に基づく新しいフレームワークを提案する。
言語治療領域における64,177論文からの2,421件の介入を同定した。
論文 参考訳(メタデータ) (2024-08-20T16:42:23Z) - Chatbot-Based Ontology Interaction Using Large Language Models and Domain-Specific Standards [41.19948826527649]
大規模言語モデル(LLM)は、SPARQLクエリ生成を強化するために使用される。
システムはユーザーの問い合わせを正確なSPARQLクエリに変換する。
確立されたドメイン固有の標準からの追加情報がインターフェースに統合される。
論文 参考訳(メタデータ) (2024-07-22T11:58:36Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
検索エンハンスメントは機械学習(ML)の幅広い範囲に拡張できる
この研究は、MLの様々な領域の文献を、現在の文献から欠落している一貫した表記で合成することで、このパラダイムの正式なフレームワークであるRetrieval-Enhanced Machine Learning (REML)を導入する。
本研究の目的は、様々な分野の研究者に対して、検索強化モデルの包括的、正式に構造化された枠組みを付与し、学際的な将来の研究を促進することである。
論文 参考訳(メタデータ) (2024-07-17T20:01:21Z) - Development and Evaluation of a Retrieval-Augmented Generation Tool for Creating SAPPhIRE Models of Artificial Systems [0.0]
本研究では,Large Language Models (LLM) をシステム構造記述に活用する方法を検討する。
本稿では,人工システムのSAPPhIRE構造に関連する情報を生成するための新しい検索拡張生成(RAG)ツールを提案する。
論文 参考訳(メタデータ) (2024-06-27T19:20:09Z) - A Systematic Survey of Prompt Engineering in Large Language Models:
Techniques and Applications [11.568575664316143]
本稿では,応用分野別に分類した,最近のプロンプト工学の進歩について概説する。
本稿では、プロンプト手法、その応用、関連するモデル、利用したデータセットについて詳述する。
この体系的な分析は、この急速に発展している分野をよりよく理解し、オープンな課題と迅速なエンジニアリングの機会を照明することによって将来の研究を促進する。
論文 参考訳(メタデータ) (2024-02-05T19:49:13Z) - Model-Driven Engineering Method to Support the Formalization of Machine
Learning using SysML [0.0]
本研究は,モデルベース工学を活用した機械学習タスクの協調的定義を支援する手法を提案する。
この方法は、様々なデータソースの識別と統合、データ属性間のセマンティックな関係の定義、データ処理ステップの定義をサポートする。
論文 参考訳(メタデータ) (2023-07-10T11:33:46Z) - Recommender Systems in the Era of Large Language Models (LLMs) [62.0129013439038]
大規模言語モデル(LLM)は自然言語処理(NLP)と人工知能(AI)の分野に革命をもたらした。
我々は, プレトレーニング, ファインチューニング, プロンプティングなどの様々な側面から, LLM を利用したレコメンデータシステムの総合的なレビューを行う。
論文 参考訳(メタデータ) (2023-07-05T06:03:40Z) - Redeeming Data Science by Decision Modelling [0.0]
本稿では,従来の機械学習モデルと明示的な値モデルを組み合わせる方法を説明する。
具体的な例を示すために、モデルのROC曲線とユーティリティモデルを統合することで、これをどのように行うかを示します。
論文 参考訳(メタデータ) (2023-06-30T19:00:04Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野で強力なツールとして登場した。
本調査では,これらのモデルを2つの主要なパラダイム(DLLM4Rec)とジェネレーティブLSM4Rec(GLLM4Rec)に分類する。
論文 参考訳(メタデータ) (2023-05-31T13:51:26Z) - Information Extraction in Low-Resource Scenarios: Survey and Perspective [56.5556523013924]
情報抽出は構造化されていないテキストから構造化された情報を導き出そうとする。
本稿では,emphLLMおよびemphLLMに基づく低リソースIEに対するニューラルアプローチについて概説する。
論文 参考訳(メタデータ) (2022-02-16T13:44:00Z) - SMT-Based Safety Verification of Data-Aware Processes under Ontologies
(Extended Version) [71.12474112166767]
我々は、このスペクトルで最も調査されたモデルの1つ、すなわち単純なアーティファクトシステム(SAS)の変種を紹介する。
このDLは適切なモデル理論特性を享受し、後方到達性を適用可能なSASを定義することができ、対応する安全問題のPSPACEにおける決定可能性をもたらす。
論文 参考訳(メタデータ) (2021-08-27T15:04:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。