論文の概要: AI Age Discrepancy: A Novel Parameter for Frailty Assessment in Kidney Tumor Patients
- arxiv url: http://arxiv.org/abs/2407.00438v2
- Date: Tue, 2 Jul 2024 12:40:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 03:15:45.256504
- Title: AI Age Discrepancy: A Novel Parameter for Frailty Assessment in Kidney Tumor Patients
- Title(参考訳): 腎腫瘍におけるAI年齢の相違 : 欠陥評価のための新しいパラメータ
- Authors: Rikhil Seshadri, Jayant Siva, Angelica Bartholomew, Clara Goebel, Gabriel Wallerstein-King, Beatriz López Morato, Nicholas Heller, Jason Scovell, Rebecca Campbell, Andrew Wood, Michal Ozery-Flato, Vesna Barros, Maria Gabrani, Michal Rosen-Zvi, Resha Tejpaul, Vidhyalakshmi Ramesh, Nikolaos Papanikolopoulos, Subodh Regmi, Ryan Ward, Robert Abouassaly, Steven C. Campbell, Erick Remer, Christopher Weight,
- Abstract要約: 本稿では,術前腹部CT検査の機械学習解析から得られた新しい指標であるAI Age Discrepancyを紹介する。
高いAI年齢差は、確立された要因とは無関係に、長期入院と総合生存率の低下と大きく関連している。
- 参考スコア(独自算出の注目度): 3.2441121935479877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Kidney cancer is a global health concern, and accurate assessment of patient frailty is crucial for optimizing surgical outcomes. This paper introduces AI Age Discrepancy, a novel metric derived from machine learning analysis of preoperative abdominal CT scans, as a potential indicator of frailty and postoperative risk in kidney cancer patients. This retrospective study of 599 patients from the 2023 Kidney Tumor Segmentation (KiTS) challenge dataset found that a higher AI Age Discrepancy is significantly associated with longer hospital stays and lower overall survival rates, independent of established factors. This suggests that AI Age Discrepancy may provide valuable insights into patient frailty and could thus inform clinical decision-making in kidney cancer treatment.
- Abstract(参考訳): 腎臓がんは世界的な健康上の問題であり、外科的結果の最適化には患者欠陥の正確な評価が不可欠である。
本稿では, 術前CT画像の機械学習解析から得られた新しい指標であるAI Age Discrepancyについて, 腎癌患者の重症度と術後リスクの指標として紹介する。
2023年のKidney tumor Segmentation(KiTS)チャレンジデータセットから得られた599人の患者の振り返り調査では、AIの年齢差は、確立された要因によらず、長期入院と総合生存率の低下と著しく関連していることがわかった。
このことは、AIエイジの不一致が患者の弱さに関する貴重な洞察を与え、腎臓がん治療における臨床的意思決定を知らせる可能性があることを示唆している。
関連論文リスト
- AI-Driven Predictive Analytics Approach for Early Prognosis of Chronic Kidney Disease Using Ensemble Learning and Explainable AI [0.26217304977339473]
慢性腎臓病(英: chronic Kidney Disease、CKD)は、腎臓の構造と機能に大きな影響を及ぼし、最終的に腎不全を引き起こす異種性疾患である。
本研究の目的は、アンサンブル学習と説明可能なAIを用いて、早期予後とCKDの検出のための支配的特徴、特徴スコア、および値の可視化である。
論文 参考訳(メタデータ) (2024-06-10T18:46:14Z) - Predicting Long-term Renal Impairment in Post-COVID-19 Patients with
Machine Learning Algorithms [0.0]
新型コロナウイルスのパンデミックは世界の公衆衛生に深刻な影響を及ぼしている。
腎障害は、その長期的健康への影響により、特に注目を集めている。
本研究は,高度な機械学習アルゴリズムを用いて長期腎障害のリスクを予測する試みである。
論文 参考訳(メタデータ) (2023-09-28T14:44:06Z) - Multimodal Deep Learning for Personalized Renal Cell Carcinoma
Prognosis: Integrating CT Imaging and Clinical Data [3.790959613880792]
腎細胞癌は生存率の低い重要な世界的な健康上の課題である。
本研究の目的は, 腎細胞癌患者の生存確率を予測できる包括的深層学習モデルを考案することであった。
提案フレームワークは,3次元画像特徴抽出器,臨床変数選択,生存予測の3つのモジュールから構成される。
論文 参考訳(メタデータ) (2023-07-07T13:09:07Z) - Exploiting segmentation labels and representation learning to forecast
therapy response of PDAC patients [60.78505216352878]
化学療法に対する腫瘍反応を予測するためのハイブリッドディープニューラルネットワークパイプラインを提案する。
セグメンテーションから分類への表現伝達の組み合わせと、ローカライゼーションと表現学習を利用する。
提案手法は, 合計477個のデータセットを用いて, ROC-AUC 63.7% の処理応答を予測できる, 極めて効率的な手法である。
論文 参考訳(メタデータ) (2022-11-08T11:50:31Z) - Machine learning for dynamically predicting the onset of renal
replacement therapy in chronic kidney disease patients using claims data [0.89379057739817]
慢性腎疾患(CKD)は徐々に進行する疾患であり、最終的には腎置換療法(RRT)を必要とする。
RRTを必要とする患者の早期発見は、患者の結果を改善する。
RRT開始に一般的に使用される予測ツールはない。
論文 参考訳(メタデータ) (2022-09-03T17:50:27Z) - Intelligent Sight and Sound: A Chronic Cancer Pain Dataset [74.77784420691937]
本稿では,Intelligent Sight and Sound (ISS) 臨床試験の一環として収集された,最初の慢性ガン痛データセットを紹介する。
これまで収集されたデータは29の患者、509のスマートフォンビデオ、189,999のフレーム、そして自己報告された感情と活動の痛みのスコアから成っている。
静的画像とマルチモーダルデータを用いて、自己報告された痛みレベルを予測する。
論文 参考訳(メタデータ) (2022-04-07T22:14:37Z) - Breast Cancer Induced Bone Osteolysis Prediction Using Temporal
Variational Auto-Encoders [65.95959936242993]
骨分解性骨病変の進展を正確に予測し,可視化する深層学習フレームワークを開発した。
乳癌患者の骨格関連事象(SRE)を予防するための治療戦略の計画と評価を支援する。
論文 参考訳(メタデータ) (2022-03-20T21:00:10Z) - Prognostic Power of Texture Based Morphological Operations in a
Radiomics Study for Lung Cancer [0.0]
この研究は、非小細胞肺癌(NSCLC)を患っている患者のオープンデータベース上で行われます。
腫瘍の特徴をCT画像から抽出し,PCAおよびKaplan-Meierサバイバル分析を用いて解析し,最も関連性の高いものを選択する。
1,589件の研究された特徴のうち、32件は患者の生存を予測するために関連している。
論文 参考訳(メタデータ) (2020-12-23T13:38:19Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
我々は、集中治療室入院の必要性を予測するために、人口統計、バイタルサイン、実験室の所見から、肺不透明度の放射能と非画像の特徴を組み合わせる。
また, 地域性肺炎を含む他の肺疾患にも適用できるが, 地域性肺炎に限らない。
論文 参考訳(メタデータ) (2020-07-20T19:08:50Z) - Joint Prediction and Time Estimation of COVID-19 Developing Severe
Symptoms using Chest CT Scan [49.209225484926634]
術後に重篤な症状を発症するかどうかを判定するための共同分類法と回帰法を提案する。
提案手法は,各試料の重量を考慮し,外乱の影響を低減し,不均衡な分類の問題を検討する。
提案手法では, 重症症例の予測精度76.97%, 相関係数0.524, 変換時間0.55日差が得られた。
論文 参考訳(メタデータ) (2020-05-07T12:16:37Z) - Severity Assessment of Coronavirus Disease 2019 (COVID-19) Using
Quantitative Features from Chest CT Images [54.919022945740515]
本研究の目的は,胸部CT画像に基づく新型コロナウイルスの重症度自動評価(非重症度または重症度)を実現することである。
ランダム・フォレスト(RF)モデルは、量的特徴に基づいて重症度(非重症度または重症度)を評価するために訓練される。
新型コロナウイルスの重症度を反映する可能性のあるいくつかの定量的特徴が明らかになった。
論文 参考訳(メタデータ) (2020-03-26T15:49:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。