論文の概要: Beyond Functional Correctness: Investigating Coding Style Inconsistencies in Large Language Models
- arxiv url: http://arxiv.org/abs/2407.00456v1
- Date: Sat, 29 Jun 2024 14:56:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 03:06:00.788147
- Title: Beyond Functional Correctness: Investigating Coding Style Inconsistencies in Large Language Models
- Title(参考訳): 機能的正確性を超えて:大規模言語モデルにおけるコーディングスタイルの不整合の調査
- Authors: Yanlin Wang, Tianyue Jiang, Mingwei Liu, Jiachi Chen, Zibin Zheng,
- Abstract要約: 大規模言語モデル(LLM)は、コード生成の分野にパラダイムシフトをもたらした。
我々は、コードLLMによって生成されたコードと、人間の開発者が書いたコードとのコーディングスタイルの違いを経験的に分析する。
- 参考スコア(独自算出の注目度): 28.295926947968574
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have brought a paradigm shift to the field of code generation, offering the potential to enhance the software development process. However, previous research mainly focuses on the accuracy of code generation, while coding style differences between LLMs and human developers remain under-explored. In this paper, we empirically analyze the differences in coding style between the code generated by mainstream Code LLMs and the code written by human developers, and summarize coding style inconsistency taxonomy. Specifically, we first summarize the types of coding style inconsistencies by manually analyzing a large number of generation results. We then compare the code generated by Code LLMs with the code written by human programmers in terms of readability, conciseness, and robustness. The results reveal that LLMs and developers have different coding styles. Additionally, we study the possible causes of these inconsistencies and provide some solutions to alleviate the problem.
- Abstract(参考訳): 大規模言語モデル(LLM)は、コード生成の分野にパラダイムシフトをもたらし、ソフトウェア開発プロセスを強化する可能性を提供します。
しかし、従来の研究は主にコード生成の正確さに重点を置いていたが、LLMと人間開発者のコーディングスタイルの違いは未調査のままである。
本稿では,主流のコードLLMが生成するコードと人間開発者のコードとのコーディングスタイルの違いを実証的に分析し,コーディングスタイルの不整合性の分類を要約する。
具体的には、まず、多数の生成結果を手動で解析することで、コーディングスタイルの不整合のタイプを要約する。
次に、コードLLMによって生成されたコードを、可読性、簡潔性、堅牢性の観点から人間のプログラマによって書かれたコードと比較する。
その結果,LSMと開発者はコーディングスタイルが異なることが明らかとなった。
さらに、これらの不整合の原因について検討し、問題を緩和するためのいくつかの解決策を提供する。
関連論文リスト
- Crystal: Illuminating LLM Abilities on Language and Code [58.5467653736537]
本稿では,自然言語と符号化機能の統合性を高めるための事前学習戦略を提案する。
結果のモデルであるCrystalは、両方のドメインで顕著な能力を示します。
論文 参考訳(メタデータ) (2024-11-06T10:28:46Z) - Steering Large Language Models between Code Execution and Textual Reasoning [22.279107036500083]
テキスト推論は、数学、論理学、最適化、探索における課題を伴うタスクの解決に固有の制限がある。
最近リリースされたOpenAI GPT Code InterpreterとAutoGenのようなマルチエージェントフレームワークは、コード生成と実行を統合するのに顕著な能力を示している。
LLMのコード/テキスト生成を良くし、顕著な改善を実現するための3つの方法を提案する。
論文 参考訳(メタデータ) (2024-10-04T15:44:47Z) - Can OpenSource beat ChatGPT? -- A Comparative Study of Large Language Models for Text-to-Code Generation [0.24578723416255752]
テキスト・ツー・コード生成の能力について,5つの大言語モデル (LLM) を評価した。
ChatGPTはこれらの典型的なプログラミング課題を、Code Llamaのようなコード特化モデルよりもはるかに効果的に処理することができる。
論文 参考訳(メタデータ) (2024-09-06T10:03:49Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - AlchemistCoder: Harmonizing and Eliciting Code Capability by Hindsight Tuning on Multi-source Data [64.69872638349922]
本稿では、マルチソースデータに微調整されたコード生成と一般化機能を備えたコードLLMのシリーズであるAlchemistCoderを紹介する。
本稿では,データ構築過程を微調整データに組み込んで,命令の進化,データフィルタリング,コードレビューなどのコード理解タスクを提案する。
論文 参考訳(メタデータ) (2024-05-29T16:57:33Z) - Uncovering LLM-Generated Code: A Zero-Shot Synthetic Code Detector via Code Rewriting [78.48355455324688]
そこで本研究では,コードと書き直された変種との類似性に基づいて,ゼロショット合成符号検出器を提案する。
以上の結果から,既存のテキスト用合成コンテンツ検出装置よりも顕著な向上が見られた。
論文 参考訳(メタデータ) (2024-05-25T08:57:28Z) - CodeGRAG: Bridging the Gap between Natural Language and Programming Language via Graphical Retrieval Augmented Generation [58.84212778960507]
我々は,LLMの性能を高めるため,グラフィカル検索拡張コード生成フレームワークであるCodeGRAGを提案する。
CodeGRAGは、制御フローとデータフローに基づいて、コードブロックのグラフィカルなビューを構築し、プログラミング言語と自然言語のギャップを埋める。
ハードメタグラフプロンプト、ソフトプロンプト技術、事前訓練されたGNN専門家の目的の有効性を検証するために、C++言語とピソン言語の両方を含む4つのデータセットで様々な実験と改善が行われた。
論文 参考訳(メタデータ) (2024-05-03T02:48:55Z) - Comments as Natural Logic Pivots: Improve Code Generation via Comment Perspective [85.48043537327258]
本稿では, MANGO (comMents As Natural loGic pivOts) を提案する。
その結果、MANGOは強いベースラインに基づいてコードパス率を大幅に改善することがわかった。
論理的なコメントの復号化戦略の堅牢性は、考えの連鎖よりも顕著に高い。
論文 参考訳(メタデータ) (2024-04-11T08:30:46Z) - Mutation-based Consistency Testing for Evaluating the Code Understanding
Capability of LLMs [5.549095839198671]
大きな言語モデル(LLM)は、自然言語とプログラミング言語の両方を処理する際、顕著な能力を示している。
本稿では,LLMのコード理解性能を評価する新しい手法を提案し,特にコードと記述の微妙な差異に着目した。
演算子置換やステートメント削除など,さまざまなタイプのコード突然変異を適用して,一貫性のないコード記述ペアを生成する。
我々は,現在最先端のコード生成ベンチマークであるHumanEval-Xを用いて,GPT-3.5とGPT-4の2つのLLMのケーススタディを行う。
論文 参考訳(メタデータ) (2024-01-11T14:27:43Z) - Test-Case-Driven Programming Understanding in Large Language Models for
Better Code Generation [15.166827643436346]
muFiXは、大きな言語モデル(LLM)のコード生成性能を改善する新しいプロンプト技術である。
まず、テストケース分析を利用して仕様の理解を得、自己改善プロセスを可能にする。
muFiXはさらに、提供された理解と実際の理解の間のギャップを減らす方向に向けた仕様理解を修正している。
論文 参考訳(メタデータ) (2023-09-28T02:58:07Z) - Do Large Language Models Pay Similar Attention Like Human Programmers When Generating Code? [10.249771123421432]
我々は,Large Language Models (LLMs) が,コード生成中に人間のプログラマと同じタスク記述に係わるかどうかを検討する。
手動で211の間違ったコードスニペットを分析し、多くのコード生成エラーを説明するのに使える5つの注意パターンを見つけました。
この結果から,人間によるLLMの理解性向上とプログラマの信頼度向上の必要性が浮き彫りになった。
論文 参考訳(メタデータ) (2023-06-02T00:57:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。