論文の概要: Can OpenSource beat ChatGPT? -- A Comparative Study of Large Language Models for Text-to-Code Generation
- arxiv url: http://arxiv.org/abs/2409.04164v1
- Date: Fri, 6 Sep 2024 10:03:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-09 16:16:11.485312
- Title: Can OpenSource beat ChatGPT? -- A Comparative Study of Large Language Models for Text-to-Code Generation
- Title(参考訳): OpenSourceはChatGPTに勝てるか -- テキスト・コード生成のための大規模言語モデルの比較研究
- Authors: Luis Mayer, Christian Heumann, Matthias Aßenmacher,
- Abstract要約: テキスト・ツー・コード生成の能力について,5つの大言語モデル (LLM) を評価した。
ChatGPTはこれらの典型的なプログラミング課題を、Code Llamaのようなコード特化モデルよりもはるかに効果的に処理することができる。
- 参考スコア(独自算出の注目度): 0.24578723416255752
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, large language models (LLMs) have emerged as powerful tools with potential applications in various fields, including software engineering. Within the scope of this research, we evaluate five different state-of-the-art LLMs - Bard, BingChat, ChatGPT, Llama2, and Code Llama - concerning their capabilities for text-to-code generation. In an empirical study, we feed prompts with textual descriptions of coding problems sourced from the programming website LeetCode to the models with the task of creating solutions in Python. Subsequently, the quality of the generated outputs is assessed using the testing functionalities of LeetCode. The results indicate large differences in performance between the investigated models. ChatGPT can handle these typical programming challenges by far the most effectively, surpassing even code-specialized models like Code Llama. To gain further insights, we measure the runtime as well as the memory usage of the generated outputs and compared them to the other code submissions on Leetcode. A detailed error analysis, encompassing a comparison of the differences concerning correct indentation and form of the generated code as well as an assignment of the incorrectly solved tasks to certain error categories allows us to obtain a more nuanced picture of the results and potential for improvement. The results also show a clear pattern of increasingly incorrect produced code when the models are facing a lot of context in the form of longer prompts.
- Abstract(参考訳): 近年,大規模言語モデル (LLM) は,ソフトウェア工学を含む様々な分野の潜在的な応用のための強力なツールとして出現している。
本研究の範囲内では,テキスト・トゥ・コード生成能力について,Bard,BingChat,ChatGPT,Llama2,Code Llamaの5種類の最先端LLMを評価した。
実証的な研究として,プログラムWebサイトLeetCodeから得られたコーディング問題のテキスト記述と,Pythonでソリューションを作成するタスクを備えたモデルへのプロンプトをフィードする。
その後、生成した出力の品質をLeetCodeのテスト機能を使って評価する。
その結果, モデル間の性能の相違が大きいことが示唆された。
ChatGPTはこれらの典型的なプログラミング課題を、Code Llamaのようなコード特化モデルよりもはるかに効果的に処理することができる。
さらなる洞察を得るために、ランタイムと生成された出力のメモリ使用量を計測し、Leetcodeの他のコードと比較する。
正確なインデントやコード形式の違いを比較した詳細なエラー解析と,不正に解決されたタスクを特定のエラーカテゴリに割り当てることで,より微妙な結果と改善の可能性が得られる。
結果は、モデルが長いプロンプトの形で多くのコンテキストに直面しているときに、ますます間違ったコードを生成するパターンも示しています。
関連論文リスト
- Insights from Benchmarking Frontier Language Models on Web App Code Generation [1.7268889851975326]
本稿では,WebApp1Kベンチマークによる16のフロンティア大言語モデル(LLM)の評価から得られた知見について述べる。
結果は、全てのモデルが類似した知識を持っているが、それらの性能は、それらが犯した誤りの頻度によって区別されることを示している。
論文 参考訳(メタデータ) (2024-09-08T18:24:26Z) - Beyond Functional Correctness: Investigating Coding Style Inconsistencies in Large Language Models [28.295926947968574]
大規模言語モデル(LLM)は、コード生成の分野にパラダイムシフトをもたらした。
我々は、コードLLMによって生成されたコードと、人間の開発者が書いたコードとのコーディングスタイルの違いを経験的に分析する。
論文 参考訳(メタデータ) (2024-06-29T14:56:11Z) - CodeRAG-Bench: Can Retrieval Augment Code Generation? [78.37076502395699]
検索拡張生成を用いたコード生成の系統的,大規模な解析を行う。
まず、コード生成タスクの3つのカテゴリを含む総合的な評価ベンチマークであるCodeRAG-Benchをキュレートする。
CodeRAG-Bench上のトップパフォーマンスモデルについて、1つまたは複数のソースから検索したコンテキストを提供することにより検討する。
論文 参考訳(メタデータ) (2024-06-20T16:59:52Z) - SparseCoder: Identifier-Aware Sparse Transformer for File-Level Code
Summarization [51.67317895094664]
本稿では,大規模なソースコードプロジェクトの理解と維持を支援するファイルレベルのコード要約について検討する。
長いコードシーケンスを効果的に処理するための識別子対応スパース変換器であるSparseCoderを提案する。
論文 参考訳(メタデータ) (2024-01-26T09:23:27Z) - Testing LLMs on Code Generation with Varying Levels of Prompt
Specificity [0.0]
大規模言語モデル (LLM) は、人間のようなテキスト生成と処理を模倣する非並列的な技術を示している。
自然言語のプロンプトを実行可能なコードに変換する可能性は、ソフトウェア開発プラクティスの大きな変化を約束します。
論文 参考訳(メタデータ) (2023-11-10T23:41:41Z) - Exploring Large Language Models for Code Explanation [3.2570216147409514]
大規模言語モデル(LLM)は自然言語処理において顕著な進歩を遂げている。
本研究では,様々なLLMを用いて,コードスニペットの自然言語要約を生成するタスクについて検討する。
論文 参考訳(メタデータ) (2023-10-25T14:38:40Z) - Enriching Source Code with Contextual Data for Code Completion Models:
An Empirical Study [4.438873396405334]
コンテクストデータを用いてコードを理解しやすくすることで、コード補完作業のための事前学習された言語モデルの性能が向上するかどうかを問う。
コメントについては、マルチラインコメントの存在下でモデルの性能が向上していることが分かる。
論文 参考訳(メタデータ) (2023-04-24T17:09:14Z) - Teaching Large Language Models to Self-Debug [62.424077000154945]
大規模言語モデル(LLM)は、コード生成において素晴らしいパフォーマンスを達成した。
本稿では,大規模言語モデルで予測プログラムを数発のデモでデバッグする自己デバッグを提案する。
論文 参考訳(メタデータ) (2023-04-11T10:43:43Z) - LEVER: Learning to Verify Language-to-Code Generation with Execution [64.36459105535]
本稿では,プログラムの実行結果の検証を学習することで,言語からコードへの生成を改善するシンプルな手法であるLEVERを提案する。
具体的には、LLMからサンプリングされたプログラムが、自然言語入力、プログラム自体とその実行結果に基づいて正しいか否かを判定するために、検証者を訓練する。
LEVER はベースコード LLMs (4.6% から 10.9% まで) を継続的に改善し、それらすべてに対して新しい最先端の結果を得る。
論文 参考訳(メタデータ) (2023-02-16T18:23:22Z) - Fault-Aware Neural Code Rankers [64.41888054066861]
サンプルプログラムの正しさを予測できる故障認識型ニューラルネットワークローダを提案する。
我々のフォールト・アウェア・ローダは、様々なコード生成モデルのpass@1精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2022-06-04T22:01:05Z) - Measuring Coding Challenge Competence With APPS [54.22600767666257]
コード生成のベンチマークであるAPPSを紹介する。
私たちのベンチマークには1万の問題が含まれています。
GPT-Neoのような最近のモデルでは、導入問題のテストケースの約15%をパスできる。
論文 参考訳(メタデータ) (2021-05-20T17:58:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。