論文の概要: ShapG: new feature importance method based on the Shapley value
- arxiv url: http://arxiv.org/abs/2407.00506v1
- Date: Sat, 29 Jun 2024 18:19:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 02:46:30.890999
- Title: ShapG: new feature importance method based on the Shapley value
- Title(参考訳): ShapG:Shapley値に基づく新しい特徴重要度手法
- Authors: Chi Zhao, Jing Liu, Elena Parilina,
- Abstract要約: 特徴量を測定するために,ShapG (Shapley value for Graphs) と呼ばれる新しい説明可能な人工知能 (XAI) 手法を提案する。
最初の段階では、データセットに基づいて、ノードが機能を表し、エッジが追加される非指向グラフを定義する。
第2段階では、このグラフ構造を考慮したデータをサンプリングすることにより、近似されたシェープ値を算出する。
- 参考スコア(独自算出の注目度): 3.411077163447709
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With wide application of Artificial Intelligence (AI), it has become particularly important to make decisions of AI systems explainable and transparent. In this paper, we proposed a new Explainable Artificial Intelligence (XAI) method called ShapG (Explanations based on Shapley value for Graphs) for measuring feature importance. ShapG is a model-agnostic global explanation method. At the first stage, it defines an undirected graph based on the dataset, where nodes represent features and edges are added based on calculation of correlation coefficients between features. At the second stage, it calculates an approximated Shapley value by sampling the data taking into account this graph structure. The sampling approach of ShapG allows to calculate the importance of features efficiently, i.e. to reduce computational complexity. Comparison of ShapG with other existing XAI methods shows that it provides more accurate explanations for two examined datasets. We also compared other XAI methods developed based on cooperative game theory with ShapG in running time, and the results show that ShapG exhibits obvious advantages in its running time, which further proves efficiency of ShapG. In addition, extensive experiments demonstrate a wide range of applicability of the ShapG method for explaining complex models. We find ShapG an important tool in improving explainability and transparency of AI systems and believe it can be widely used in various fields.
- Abstract(参考訳): 人工知能(AI)の幅広い応用により、AIシステムの決定を説明可能かつ透明にすることが特に重要になっている。
本稿では,特徴量を測定するために,ShapG(Shapley値に基づくグラフ表現)と呼ばれる新しい説明可能な人工知能(XAI)手法を提案する。
ShapGはモデルに依存しないグローバルな説明法である。
最初の段階ではデータセットに基づいて非方向グラフを定義し、ノードは特徴を表現し、エッジは特徴間の相関係数の計算に基づいて追加される。
第2段階では、このグラフ構造を考慮したデータをサンプリングすることにより、近似されたシェープ値を算出する。
ShapGのサンプリングアプローチは、効率よく特徴の重要さを計算し、すなわち計算複雑性を減少させる。
ShapGと既存のXAI法の比較は、2つの調査データセットに対してより正確な説明を提供することを示している。
また, ランニング時間における協調ゲーム理論に基づく他のXAI手法とShapGを比較した結果, ShapGがランニング時間において明らかな優位性を示し, ShapGの効率性がさらに証明された。
さらに、複雑なモデルを説明するためのShapG法の適用性についても広範な実験が実施されている。
ShapGはAIシステムの説明可能性や透明性を向上させる上で重要なツールであり、さまざまな分野で広く利用することができると信じています。
関連論文リスト
- From Abstract to Actionable: Pairwise Shapley Values for Explainable AI [0.8192907805418583]
提案するPairwise Shapley Valuesは,特徴属性を明示的,人間関連性のある比較に基礎を置く新しいフレームワークである。
本手法では,一値命令と組み合わせたペアワイズ参照選択を導入し,直観的,モデルに依存しない説明を行う。
Pairwise Shapley Valuesは多種多様な回帰・分類シナリオにおける解釈可能性を高めることを実証する。
論文 参考訳(メタデータ) (2025-02-18T04:20:18Z) - Exact Computation of Any-Order Shapley Interactions for Graph Neural Networks [53.10674067060148]
共有インタラクション(SI)は、複数のノード間のノードのコントリビューションとインタラクションを定量化する。
GNNアーキテクチャを利用して、ノード埋め込みにおける相互作用の構造がグラフ予測のために保存されていることを示す。
任意の順序SIを正確に計算するための効率的なアプローチであるGraphSHAP-IQを導入する。
論文 参考訳(メタデータ) (2025-01-28T13:37:44Z) - shapiq: Shapley Interactions for Machine Learning [21.939393765684827]
Shapley Value(SV)とShapley Interactions(SI)を効率的に計算するために、最先端のアルゴリズムを統一したオープンソースのPythonパッケージであるshapiqを紹介する。
実践者にとって、Shapiqは、視覚変換器、言語モデル、XGBoost、TreeShap-IQによるLightGBMなど、モデルの予測において、任意の順序のフィーチャーインタラクションを説明および視覚化することができる。
論文 参考訳(メタデータ) (2024-10-02T15:16:53Z) - Fast Shapley Value Estimation: A Unified Approach [71.92014859992263]
冗長な手法を排除し、単純で効率的なシェープリー推定器SimSHAPを提案する。
既存手法の解析において、推定器は特徴部分集合からランダムに要約された値の線形変換として統一可能であることを観察する。
実験により,SimSHAPの有効性が検証され,精度の高いShapley値の計算が大幅に高速化された。
論文 参考訳(メタデータ) (2023-11-02T06:09:24Z) - Generalizing Backpropagation for Gradient-Based Interpretability [103.2998254573497]
モデルの勾配は、半環を用いたより一般的な定式化の特別な場合であることを示す。
この観測により、バックプロパゲーションアルゴリズムを一般化し、他の解釈可能な統計を効率的に計算することができる。
論文 参考訳(メタデータ) (2023-07-06T15:19:53Z) - Grouping Shapley Value Feature Importances of Random Forests for
explainable Yield Prediction [0.8543936047647136]
本稿では,特徴群に対して直接計算されたShapley値の概念を説明し,木構造上で効率的に計算するアルゴリズムを提案する。
我々は、グローバルな理解のために多くのローカルな説明を組み合わせてSwarmプロットを設計するための青写真を提供する。
論文 参考訳(メタデータ) (2023-04-14T13:03:33Z) - Localized Contrastive Learning on Graphs [110.54606263711385]
局所グラフコントラスト学習(Local-GCL)という,シンプルだが効果的なコントラストモデルを導入する。
その単純さにもかかわらず、Local-GCLは、様々なスケールと特性を持つグラフ上の自己教師付きノード表現学習タスクにおいて、非常に競争力のある性能を達成する。
論文 参考訳(メタデータ) (2022-12-08T23:36:00Z) - Explanation of Machine Learning Models Using Shapley Additive
Explanation and Application for Real Data in Hospital [0.11470070927586014]
本稿では,機械学習モデルの解釈可能性向上のための2つの新しい手法を提案する。
本稿では,A/G比が脳梗塞の重要な予後因子であることを示す。
論文 参考訳(メタデータ) (2021-12-21T10:08:31Z) - Fast Hierarchical Games for Image Explanations [78.16853337149871]
本稿では,シェープリー係数の階層的拡張に基づく画像分類のモデル非依存な説明法を提案する。
他のShapleyベースの説明手法とは異なり、h-Shapはスケーラブルで近似を必要とせずに計算できる。
本手法は,合成データセット,医用画像シナリオ,一般コンピュータビジョン問題において,一般的なシャプリーベースおよび非サプリーベース手法と比較した。
論文 参考訳(メタデータ) (2021-04-13T13:11:02Z) - Deep Reinforcement Learning of Graph Matching [63.469961545293756]
ノードとペアの制約下でのグラフマッチング(GM)は、最適化からコンピュータビジョンまでの領域におけるビルディングブロックである。
GMのための強化学習ソルバを提案する。
rgmはペアワイズグラフ間のノード対応を求める。
本手法は,フロントエンドの特徴抽出と親和性関数学習に焦点をあてるという意味において,従来のディープグラフマッチングモデルと異なる。
論文 参考訳(メタデータ) (2020-12-16T13:48:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。