論文の概要: Can artificial intelligence predict clinical trial outcomes?
- arxiv url: http://arxiv.org/abs/2411.17595v1
- Date: Tue, 26 Nov 2024 17:05:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:30:41.329294
- Title: Can artificial intelligence predict clinical trial outcomes?
- Title(参考訳): 人工知能は臨床試験の結果を予測することができるか?
- Authors: Shuyi Jin, Lu Chen, Hongru Ding, Meijie Wang, Lun Yu,
- Abstract要約: 本研究では,大言語モデル(LLM)の臨床試験結果の予測能力について検討した。
我々は、バランスの取れた精度、特異性、リコール、マシューズ相関係数(MCC)などの指標を用いてモデルの性能を比較する。
高い複雑さを特徴とする腫瘍学の試行は、全てのモデルで難しいままである。
- 参考スコア(独自算出の注目度): 5.326858857564308
- License:
- Abstract: The increasing complexity and cost of clinical trials, particularly in the context of oncology and advanced therapies, pose significant challenges for drug development. This study evaluates the predictive capabilities of large language models (LLMs) such as GPT-3.5, GPT-4, and HINT in determining clinical trial outcomes. By leveraging a curated dataset of trials from ClinicalTrials.gov, we compare the models' performance using metrics including balanced accuracy, specificity, recall, and Matthews Correlation Coefficient (MCC). Results indicate that GPT-4o demonstrates robust performance in early trial phases, achieving high recall but facing limitations in specificity. Conversely, the HINT model excels in recognizing negative outcomes, particularly in later trial phases, offering a balanced approach across diverse endpoints. Oncology trials, characterized by high complexity, remain challenging for all models. Additionally, trial duration and disease categories influence predictive performance, with longer durations and complex diseases such as neoplasms reducing accuracy. This study highlights the complementary strengths of LLMs and HINT, providing insights into optimizing predictive tools for clinical trial design and risk management. Future advancements in LLMs are essential to address current gaps in handling negative outcomes and complex domains.
- Abstract(参考訳): 臨床試験の複雑さとコストの増大、特に腫瘍学や先進療法の文脈では、薬物開発に大きな課題が生じる。
本研究は, GPT-3.5, GPT-4, HINTなどの大規模言語モデル(LLM)の臨床試験結果の予測能力について検討した。
ClinicalTrials.govのキュレートされた試行データセットを利用することで、バランスの取れた精度、特異性、リコール、マシューズ相関係数(MCC)などの指標を用いてモデルのパフォーマンスを比較する。
その結果, GPT-4oは早期試験段階において堅牢な性能を示し, 高いリコールを達成できるが, 特異性には限界があることがわかった。
逆にHINTモデルは、特に後の試行段階において、ネガティブな結果の認識に優れており、多様なエンドポイントにまたがるバランスのとれたアプローチを提供する。
高い複雑さを特徴とする腫瘍学の試行は、全てのモデルで難しいままである。
さらに、試験期間と疾患のカテゴリーは予測性能に影響し、長い期間と、ネオプラズマのような複雑な疾患が精度を低下させる。
本研究は, LLMとHINTの相補的強度を強調し, 臨床治験設計およびリスク管理のための予測ツールの最適化に関する知見を提供する。
LLMの今後の進歩は、負の結果や複雑な領域を扱う際の現在のギャップに対処するために不可欠である。
関連論文リスト
- Prediction of Lung Metastasis from Hepatocellular Carcinoma using the SEER Database [0.9055332067000195]
肝細胞癌(HCC)は、がん関連死亡の原因である。
HCCにおける肺転移の予測モデルは、範囲と臨床応用性に限られている。
本研究では,Surveillance, Epidemiology, End Results (SEER)データベースのデータを用いて,エンドツーエンドの機械学習パイプラインの開発と検証を行う。
論文 参考訳(メタデータ) (2025-01-20T20:06:31Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
本稿では,マルチモーダルデータ(例えば,薬物分子,疾患コード,テキスト,分類・数値的特徴)と臨床治験設計における8つの重要な予測課題をカバーするAIreadyデータセットを精巧にキュレートした。
データセットのユーザビリティと信頼性を確保するため、各タスクに基本的な検証方法を提供する。
このようなオープンアクセスデータセットが利用可能になることは、臨床試験設計のための高度なAIアプローチの開発を促進することを期待する。
論文 参考訳(メタデータ) (2024-06-30T09:13:10Z) - Language Interaction Network for Clinical Trial Approval Estimation [37.60098683485169]
本稿では,言語相互作用ネットワーク(LINT, Language Interaction Network)について紹介する。
臨床治験の3段階にわたって厳格にLINTを試験し,ROC-AUCスコアは0.770,0.740,0.748となった。
論文 参考訳(メタデータ) (2024-04-26T14:50:59Z) - TrialDura: Hierarchical Attention Transformer for Interpretable Clinical Trial Duration Prediction [19.084936647082632]
マルチモーダルデータを用いて臨床試験期間を推定する機械学習に基づくTrialDuraを提案する。
バイオメディカルコンテキストに特化されたBio-BERT埋め込みにエンコードして,より深く,より関連するセマンティック理解を提供する。
提案モデルでは, 平均絶対誤差(MAE)が1.04年, 根平均二乗誤差(RMSE)が1.39年であった。
論文 参考訳(メタデータ) (2024-04-20T02:12:59Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
臨床試験は薬物開発に不可欠であるが、しばしば高価で非効率な患者募集に苦しむ。
近年,患者と臨床試験を自動マッチングすることで患者採用を高速化する機械学習モデルが提案されている。
本稿では,TREement という名前の動的ツリーベースメモリネットワークモデルを導入する。
論文 参考訳(メタデータ) (2023-07-19T12:35:09Z) - SPOT: Sequential Predictive Modeling of Clinical Trial Outcome with
Meta-Learning [67.8195828626489]
臨床試験は薬物開発に不可欠であるが、時間を要する、費用がかかる、失敗する傾向がある。
本稿では,まず,複数ソースの臨床試験データを関連するトライアルトピックにクラスタリングするために,臨床トライアル結果の逐次予測mOdeling(SPOT)を提案する。
タスクとして各トライアルシーケンスを考慮して、メタ学習戦略を使用して、モデルが最小限のアップデートで新しいタスクに迅速に適応できるポイントを達成する。
論文 参考訳(メタデータ) (2023-04-07T23:04:27Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
治療のパーソナライズされた効果を見積もるのは複雑だが、普及している問題である。
ヘテロジニアス処理効果推定に関する機械学習文献の最近の進歩は、洗練されたが不透明なツールの多くを生み出した。
我々は、ポストホックな特徴重要度法を用いて、モデルの予測に影響を及ぼす特徴を特定する。
論文 参考訳(メタデータ) (2022-06-16T17:59:05Z) - HINT: Hierarchical Interaction Network for Trial Outcome Prediction
Leveraging Web Data [56.53715632642495]
臨床試験は、有効性、安全性、または患者採用の問題により、不確実な結果に直面する。
本稿では,より一般的な臨床試験結果予測のための階層型Interaction Network(HINT)を提案する。
論文 参考訳(メタデータ) (2021-02-08T15:09:07Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
本稿では,患者の予後と治療反応を予測するための統合型深層学習手法を提案する。
我々は,マルチモーダル非同期時系列分類タスクとして,確率モデリングを定式化する。
我々の予測モデルは、長期生存の観点から、低リスク、高リスクの患者をさらに階層化する可能性がある。
論文 参考訳(メタデータ) (2020-10-08T15:30:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。