NourishNet: Proactive Severity State Forecasting of Food Commodity Prices for Global Warning Systems
- URL: http://arxiv.org/abs/2407.00698v1
- Date: Sun, 30 Jun 2024 13:43:26 GMT
- Title: NourishNet: Proactive Severity State Forecasting of Food Commodity Prices for Global Warning Systems
- Authors: Sydney Balboni, Grace Ivey, Brett Storoe, John Cisler, Tyge Plater, Caitlyn Grant, Ella Bruce, Benjamin Paulson,
- Abstract summary: Price volatility in global food commodities is a critical signal indicating potential disruptions in the food market.
FAO previously developed sophisticated statistical frameworks for the proactive prediction of food commodity prices.
Our research builds on these foundations by integrating robust price security indicators with cutting-edge deep learning (DL) methodologies.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Price volatility in global food commodities is a critical signal indicating potential disruptions in the food market. Understanding forthcoming changes in these prices is essential for bolstering food security, particularly for nations at risk. The Food and Agriculture Organization of the United Nations (FAO) previously developed sophisticated statistical frameworks for the proactive prediction of food commodity prices, aiding in the creation of global early warning systems. These frameworks utilize food security indicators to produce accurate forecasts, thereby facilitating preparations against potential food shortages. Our research builds on these foundations by integrating robust price security indicators with cutting-edge deep learning (DL) methodologies to reveal complex interdependencies. DL techniques examine intricate dynamics among diverse factors affecting food prices. Through sophisticated time-series forecasting models coupled with a classification model, our approach enhances existing models to better support communities worldwide in advancing their food security initiatives.
Related papers
- RoDE: Linear Rectified Mixture of Diverse Experts for Food Large Multi-Modal Models [96.43285670458803]
Uni-Food is a unified food dataset that comprises over 100,000 images with various food labels.
Uni-Food is designed to provide a more holistic approach to food data analysis.
We introduce a novel Linear Rectification Mixture of Diverse Experts (RoDE) approach to address the inherent challenges of food-related multitasking.
arXiv Detail & Related papers (2024-07-17T16:49:34Z) - From Canteen Food to Daily Meals: Generalizing Food Recognition to More
Practical Scenarios [92.58097090916166]
We present two new benchmarks, namely DailyFood-172 and DailyFood-16, designed to curate food images from everyday meals.
These two datasets are used to evaluate the transferability of approaches from the well-curated food image domain to the everyday-life food image domain.
arXiv Detail & Related papers (2024-03-12T08:32:23Z) - Forecasting trends in food security with real time data [0.0]
We present a quantitative methodology to forecast levels of food consumption for 60 consecutive days, at the sub-national level, in four countries: Mali, Nigeria, Syria, and Yemen.
The methodology is built on publicly available data from the World Food Programme's global hunger monitoring system.
arXiv Detail & Related papers (2023-12-01T14:42:37Z) - Revolutionizing Global Food Security: Empowering Resilience through
Integrated AI Foundation Models and Data-Driven Solutions [8.017557640367938]
This paper explores the integration of AI foundation models across various food security applications.
We investigate their utilization in crop type mapping, cropland mapping, field delineation and crop yield prediction.
arXiv Detail & Related papers (2023-10-31T09:15:35Z) - Food Image Classification and Segmentation with Attention-based Multiple
Instance Learning [51.279800092581844]
The paper presents a weakly supervised methodology for training food image classification and semantic segmentation models.
The proposed methodology is based on a multiple instance learning approach in combination with an attention-based mechanism.
We conduct experiments on two meta-classes within the FoodSeg103 data set to verify the feasibility of the proposed approach.
arXiv Detail & Related papers (2023-08-22T13:59:47Z) - Empowering Agrifood System with Artificial Intelligence: A Survey of the Progress, Challenges and Opportunities [86.89427012495457]
We review how AI techniques can transform agrifood systems and contribute to the modern agrifood industry.
We present a progress review of AI methods in agrifood systems, specifically in agriculture, animal husbandry, and fishery.
We highlight potential challenges and promising research opportunities for transforming modern agrifood systems with AI.
arXiv Detail & Related papers (2023-05-03T05:16:54Z) - Goal oriented indicators for food systems based on FAIR data [0.0]
We propose a framework for a food supply chain devoted to the vision of zero waste and zero emissions.
We provide the reasoning for a cost-effective use case in the domain of food, to create a valuable digital twin.
arXiv Detail & Related papers (2023-02-20T11:20:44Z) - A Framework for Evaluating the Impact of Food Security Scenarios [0.0]
The case study is based on a proprietary time series food security database created using data from the Food and Agriculture Organization of the United Nations (FAOSTAT), the World Bank, and the United States Department of Agriculture (USDA)
The proposed approach can be used to predict the potential impacts of scenarios on food security and the proprietary time series food security database can be used to support this approach.
arXiv Detail & Related papers (2023-01-23T08:41:46Z) - Vision-Based Food Analysis for Automatic Dietary Assessment [49.32348549508578]
This review presents one unified Vision-Based Dietary Assessment (VBDA) framework, which generally consists of three stages: food image analysis, volume estimation and nutrient derivation.
Deep learning makes VBDA gradually move to an end-to-end implementation, which applies food images to a single network to directly estimate the nutrition.
arXiv Detail & Related papers (2021-08-06T05:46:01Z) - Towards Building a Food Knowledge Graph for Internet of Food [66.57235827087092]
We review the evolution of food knowledge organization, from food classification to food to food knowledge graphs.
Food knowledge graphs play an important role in food search and Question Answering (QA), personalized dietary recommendation, food analysis and visualization.
Future directions for food knowledge graphs cover several fields such as multimodal food knowledge graphs and food intelligence.
arXiv Detail & Related papers (2021-07-13T06:26:53Z) - Food safety risk prediction with Deep Learning models using categorical
embeddings on European Union data [1.4502611532302039]
The European Union began to register in 1977 all irregularities related to traded products to ensure cross-border monitoring.
Data related to food issues was scraped and analysed with Machine Learning techniques to predict some features of future notifications.
Results show that the system can predict these features with an accuracy ranging from 74.08% to 93.06%.
arXiv Detail & Related papers (2020-09-14T19:36:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.