Quantum noise induced nonreciprocity for single photon transport in parity-time symmetric systems
- URL: http://arxiv.org/abs/2407.00758v1
- Date: Sun, 30 Jun 2024 16:47:57 GMT
- Title: Quantum noise induced nonreciprocity for single photon transport in parity-time symmetric systems
- Authors: Dibyendu Roy, G. S. Agarwal,
- Abstract summary: We show nonreciprocal light propagation for single-photon inputs due to quantum noise in coupled optical systems with gain and loss.
We consider two parity-time ($mathcalPT$) symmetric linear optical systems consisting of either two directly coupled resonators or two finite-length waveguides evanescently coupled in parallel.
- Score: 1.6597433198079004
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show nonreciprocal light propagation for single-photon inputs due to quantum noise in coupled optical systems with gain and loss. We consider two parity-time ($\mathcal{PT}$) symmetric linear optical systems consisting of either two directly coupled resonators or two finite-length waveguides evanescently coupled in parallel. One resonator or waveguide is filled with an active gain medium and the other with a passive loss medium. The light propagation is reciprocal in such $\mathcal{PT}$ symmetric linear systems without quantum noise. We show here that light transmission becomes nonreciprocal when we include quantum noises in our modeling, which is essential for a proper physical description. The quantum nonreciprocity is especially pronounced in the $\mathcal{PT}$ broken phase. Transmitted light intensity in the waveguide of incidence is asymmetric for two waveguides even without noise. Quantum noise significantly enhances such asymmetry in the broken phase.
Related papers
- Strong coupling between a single photon and a photon pair [43.14346227009377]
We report an experimental observation of the strong coupling between a single photon and a photon pair in an ultrastrongly-coupled circuit-QED system.
Results represent a key step towards a new regime of quantum nonlinear optics.
arXiv Detail & Related papers (2024-01-05T10:23:14Z) - Quantum entanglement between optical and microwave photonic qubits [1.817633657275965]
Entanglement is an extraordinary feature of quantum mechanics.
Here we demonstrate a chip-scale source of entangled optical and microwave photonic qubits.
arXiv Detail & Related papers (2023-12-21T04:02:48Z) - Violation of Bell inequality by photon scattering on a two-level emitter [4.810881229568956]
Entanglement, the non-local correlations present in quantum systems, is a curious feature of quantum mechanics and the fuel of quantum technology.
We show how a single two-level emitter deterministically coupled to light in a nanophotonic waveguide is used to realize genuine photonic quantum entanglement for excitation at the single photon level.
arXiv Detail & Related papers (2023-06-22T11:01:24Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Quantum Borrmann effect for dissipation-immune photon-photon
correlations [137.6408511310322]
We study theoretically the second-order correlation function $g(2)(t)$ for photons transmitted through a periodic Bragg-spaced array of superconducting qubits, coupled to a waveguide.
We demonstrate that photon bunching and anti-bunching persist much longer than both radiative and non-radiative lifetimes of a single qubit.
arXiv Detail & Related papers (2020-09-29T14:37:04Z) - Transport of pseudothermal photons through an anharmonic cavity [0.0]
Under nonequilibrium conditions, quantum optical systems reveal unusual properties that might be distinct from those in condensed matter.
Here, we address the steady-state transport of pseudothermal photons between two waveguides connected through a cavity with Bose-Hubbard interaction between photons.
arXiv Detail & Related papers (2020-09-20T07:09:23Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z) - Resonance fluorescence from waveguide-coupled strain-localized
two-dimensional quantum emitters [0.0]
We show a scalable approach using a silicon nitride photonic waveguide to strain-localize single-photon emitters from a tungsten diselenide (WSe2) monolayer and to couple them into a waveguide mode.
Our results are an important step to enable coherent control of quantum states and multiplexing of high-quality single photons in a scalable photonic quantum circuit.
arXiv Detail & Related papers (2020-02-18T15:45:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.