Privacy-Aware Spectrum Pricing and Power Control Optimization for LEO Satellite Internet-of-Things
- URL: http://arxiv.org/abs/2407.00814v1
- Date: Mon, 1 Apr 2024 09:15:48 GMT
- Title: Privacy-Aware Spectrum Pricing and Power Control Optimization for LEO Satellite Internet-of-Things
- Authors: Bowen Shen, Kwok-Yan Lam, Feng Li,
- Abstract summary: We propose a hybrid spectrum pricing and power control framework for LEO IoT.
We first design a local deep reinforcement learning algorithm for LEO satellite systems to learn a revenue-maximizing pricing and power control scheme.
We also propose a reputation-based blockchain which is used in the global model aggregation phase of FL.
- Score: 14.706902417174039
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low earth orbit (LEO) satellite systems play an important role in next generation communication networks due to their ability to provide extensive global coverage with guaranteed communications in remote areas and isolated areas where base stations cannot be cost-efficiently deployed. With the pervasive adoption of LEO satellite systems, especially in the LEO Internet-of-Things (IoT) scenarios, their spectrum resource management requirements have become more complex as a result of massive service requests and high bandwidth demand from terrestrial terminals. For instance, when leasing the spectrum to terrestrial users and controlling the uplink transmit power, satellites collect user data for machine learning purposes, which usually are sensitive information such as location, budget and quality of service (QoS) requirement. To facilitate model training in LEO IoT while preserving the privacy of data, blockchain-driven federated learning (FL) is widely used by leveraging on a fully decentralized architecture. In this paper, we propose a hybrid spectrum pricing and power control framework for LEO IoT by combining blockchain technology and FL. We first design a local deep reinforcement learning algorithm for LEO satellite systems to learn a revenue-maximizing pricing and power control scheme. Then the agents collaborate to form a FL system. We also propose a reputation-based blockchain which is used in the global model aggregation phase of FL. Based on the reputation mechanism, a node is selected for each global training round to perform model aggregation and block generation, which can further enhance the decentralization of the network and guarantee the trust. Simulation tests are conducted to evaluate the performances of the proposed scheme. Our results show the efficiency of finding the maximum revenue scheme for LEO satellite systems while preserving the privacy of each agent.
Related papers
- Hierarchical Learning and Computing over Space-Ground Integrated Networks [40.19542938629252]
We propose a hierarchical learning and computing framework to provide global aggregation services for locally trained models on ground IoT devices.
We formulate a network energy problem for model aggregation, which turns out to be a Directed Steiner Tree (DST) problem.
We propose a topologyaware energy-efficient routing (TAEER) algorithm to solve the DST problem by finding a minimum spanning arborescence on a substitute directed graph.
arXiv Detail & Related papers (2024-08-26T09:05:43Z) - Federated Learning for 6G: Paradigms, Taxonomy, Recent Advances and
Insights [52.024964564408]
This paper examines the added-value of implementing Federated Learning throughout all levels of the protocol stack.
It presents important FL applications, addresses hot topics, provides valuable insights and explicits guidance for future research and developments.
Our concluding remarks aim to leverage the synergy between FL and future 6G, while highlighting FL's potential to revolutionize wireless industry.
arXiv Detail & Related papers (2023-12-07T20:39:57Z) - FedSN: A Federated Learning Framework over Heterogeneous LEO Satellite Networks [18.213174641216884]
A large number of Low Earth Orbit (LEO) satellites have been launched and deployed successfully in space by commercial companies, such as SpaceX.
Due to multimodal sensors equipped by the LEO satellites, they serve not only for communication but also for various machine learning applications, such as space modulation recognition, remote sensing image classification, etc.
We propose FedSN as a general FL framework to tackle the above challenges, and fully explore data diversity on LEO satellites.
arXiv Detail & Related papers (2023-11-02T14:47:06Z) - Over-The-Air Federated Learning: Status Quo, Open Challenges, and Future
Directions [78.5371215066019]
Over-the-air federated learning (OTA-FL) enables users at the network edge to share spectrum resources and achieves efficient and low-latency global model aggregation.
This paper provides a holistic review of progress in OTA-FL and points to potential future research directions.
arXiv Detail & Related papers (2023-07-03T12:44:52Z) - Edge Selection and Clustering for Federated Learning in Optical
Inter-LEO Satellite Constellation [12.489681058742358]
We have proposed a collaborative federated learning for low Earth orbit (FELLO)
We allocate the entire process on LEOs with low payload inter-satellite transmissions, whilst the low-delay terrestrial gateway server (GS) only takes care for initial signal controlling.
The proposed FELLO outperforms the conventional centralized and distributed architectures with higher classification accuracy as well as comparably lower latency of joint communication and computing.
arXiv Detail & Related papers (2023-03-25T04:24:16Z) - Hierarchical Multi-Agent Multi-Armed Bandit for Resource Allocation in
Multi-LEO Satellite Constellation Networks [14.964082610286857]
Low Earth orbit (LEO) satellite constellation is capable of providing global coverage area with high-rate services.
We propose hierarchical multi-agent multi-armed bandit resource allocation for LEO constellation (mmRAL) by appropriately assigning available radio resources.
arXiv Detail & Related papers (2023-03-25T04:22:07Z) - Olive Branch Learning: A Topology-Aware Federated Learning Framework for
Space-Air-Ground Integrated Network [19.059950250921926]
Training AI models centrally with the assistance of SAGIN faces the challenges of highly constrained network topology, inefficient data transmission, and privacy issues.
We first propose a novel topology-aware federated learning framework for the SAGIN, namely Olive Branch Learning (OBL)
We extend our OBL framework and CNASA algorithm to adapt to more complex multi-orbit satellite networks.
arXiv Detail & Related papers (2022-12-02T14:51:42Z) - Machine Learning-Based User Scheduling in Integrated
Satellite-HAPS-Ground Networks [82.58968700765783]
Integrated space-air-ground networks promise to offer a valuable solution space for empowering the sixth generation of communication networks (6G)
This paper showcases the prospects of machine learning in the context of user scheduling in integrated space-air-ground communications.
arXiv Detail & Related papers (2022-05-27T13:09:29Z) - Learning Emergent Random Access Protocol for LEO Satellite Networks [51.575090080749554]
We propose a novel grant-free random access solution for LEO SAT networks, dubbed emergent random access channel protocol (eRACH)
eRACH is a model-free approach that emerges through interaction with the non-stationary network environment.
Compared to RACH, we show from various simulations that our proposed eRACH yields 54.6% higher average network throughput.
arXiv Detail & Related papers (2021-12-03T07:44:45Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
Federated learning (FL) as a paradigm of collaborative learning techniques has obtained increasing research attention.
It is of interest to investigate fast responding and accurate FL schemes over wireless systems.
We show that the proposed communication-efficient federated learning framework converges at a strong linear rate.
arXiv Detail & Related papers (2021-10-22T13:25:57Z) - Wireless Communications for Collaborative Federated Learning [160.82696473996566]
Internet of Things (IoT) devices may not be able to transmit their collected data to a central controller for training machine learning models.
Google's seminal FL algorithm requires all devices to be directly connected with a central controller.
This paper introduces a novel FL framework, called collaborative FL (CFL), which enables edge devices to implement FL with less reliance on a central controller.
arXiv Detail & Related papers (2020-06-03T20:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.