Edge Selection and Clustering for Federated Learning in Optical
Inter-LEO Satellite Constellation
- URL: http://arxiv.org/abs/2303.16071v2
- Date: Mon, 10 Apr 2023 06:13:34 GMT
- Title: Edge Selection and Clustering for Federated Learning in Optical
Inter-LEO Satellite Constellation
- Authors: Chih-Yu Chen, Li-Hsiang Shen, Kai-Ten Feng, Lie-Liang Yang, and
Jen-Ming Wu
- Abstract summary: We have proposed a collaborative federated learning for low Earth orbit (FELLO)
We allocate the entire process on LEOs with low payload inter-satellite transmissions, whilst the low-delay terrestrial gateway server (GS) only takes care for initial signal controlling.
The proposed FELLO outperforms the conventional centralized and distributed architectures with higher classification accuracy as well as comparably lower latency of joint communication and computing.
- Score: 12.489681058742358
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low-Earth orbit (LEO) satellites have been prosperously deployed for various
Earth observation missions due to its capability of collecting a large amount
of image or sensor data. However, traditionally, the data training process is
performed in the terrestrial cloud server, which leads to a high transmission
overhead. With the recent development of LEO, it is more imperative to provide
ultra-dense LEO constellation with enhanced on-board computation capability.
Benefited from it, we have proposed a collaborative federated learning for low
Earth orbit (FELLO). We allocate the entire process on LEOs with low payload
inter-satellite transmissions, whilst the low-delay terrestrial gateway server
(GS) only takes care for initial signal controlling. The GS initially selects
an LEO server, whereas its LEO clients are all determined by clustering
mechanism and communication capability through the optical inter-satellite
links (ISLs). The re-clustering of changing LEO server will be executed once
with low communication quality of FELLO. In the simulations, we have
numerically analyzed the proposed FELLO under practical Walker-based LEO
constellation configurations along with MNIST training dataset for
classification mission. The proposed FELLO outperforms the conventional
centralized and distributed architectures with higher classification accuracy
as well as comparably lower latency of joint communication and computing.
Related papers
- Large Language Models for Base Station Siting: Intelligent Deployment based on Prompt or Agent [62.16747639440893]
Large language models (LLMs) and their associated technologies advance, particularly in the realms of prompt engineering and agent engineering.
This approach entails the strategic use of well-crafted prompts to infuse human experience and knowledge into these sophisticated LLMs.
This integration represents the future paradigm of artificial intelligence (AI) as a service and AI for more ease.
arXiv Detail & Related papers (2024-08-07T08:43:32Z) - Satellite Federated Edge Learning: Architecture Design and Convergence Analysis [47.057886812985984]
This paper introduces a novel FEEL algorithm, named FEDMEGA, tailored to mega-constellation networks.
By integrating inter-satellite links (ISL) for intra-orbit model aggregation, the proposed algorithm significantly reduces the usage of low data rate and intermittent GSL.
Our proposed method includes a ring all-reduce based intra-orbit aggregation mechanism, coupled with a network flow-based transmission scheme for global model aggregation.
arXiv Detail & Related papers (2024-04-02T11:59:58Z) - Privacy-Aware Spectrum Pricing and Power Control Optimization for LEO Satellite Internet-of-Things [14.706902417174039]
We propose a hybrid spectrum pricing and power control framework for LEO IoT.
We first design a local deep reinforcement learning algorithm for LEO satellite systems to learn a revenue-maximizing pricing and power control scheme.
We also propose a reputation-based blockchain which is used in the global model aggregation phase of FL.
arXiv Detail & Related papers (2024-04-01T09:15:48Z) - Stitching Satellites to the Edge: Pervasive and Efficient Federated LEO Satellite Learning [1.3121410433987561]
This paper proposes a novel FL-SEC framework that empowers satellites to execute large-scale machine learning (ML) tasks onboard efficiently.
Key components include personalized learning via divide-and-conquer, which identifies and eliminates redundant satellite images, and orbital model retraining, which generates an aggregated "orbital model" per orbit and retrains it before sending to the ground station.
Our approach dramatically reduces FL convergence time by nearly 30 times, and satellite energy consumption down to as low as 1.38 watts, all while maintaining an exceptional accuracy of up to 96%.
arXiv Detail & Related papers (2024-01-28T02:01:26Z) - FedSN: A Federated Learning Framework over Heterogeneous LEO Satellite Networks [18.213174641216884]
A large number of Low Earth Orbit (LEO) satellites have been launched and deployed successfully in space by commercial companies, such as SpaceX.
Due to multimodal sensors equipped by the LEO satellites, they serve not only for communication but also for various machine learning applications, such as space modulation recognition, remote sensing image classification, etc.
We propose FedSN as a general FL framework to tackle the above challenges, and fully explore data diversity on LEO satellites.
arXiv Detail & Related papers (2023-11-02T14:47:06Z) - Optimizing Federated Learning in LEO Satellite Constellations via
Intra-Plane Model Propagation and Sink Satellite Scheduling [3.096615629099617]
Satellite edge computing (SEC) allows each satellite to train an ML model onboard and uploads only the model to the ground station.
This paper proposes FedLEO, a novel federated learning (FL) framework that overcomes the limitation (slow convergence) of existing FL-based solutions.
Our results show that FedLEO drastically expedites FL convergence, without sacrificing -- in fact it considerably increases -- the model accuracy.
arXiv Detail & Related papers (2023-02-27T00:32:01Z) - On the Effective Usage of Priors in RSS-based Localization [56.68864078417909]
We propose a Received Signal Strength (RSS) fingerprint and convolutional neural network-based algorithm, LocUNet.
In this paper, we study the localization problem in dense urban settings.
We first recognize LocUNet's ability to learn the underlying prior distribution of the Rx position or Rx and transmitter (Tx) association preferences from the training data, and attribute its high performance to these.
arXiv Detail & Related papers (2022-11-28T00:31:02Z) - Federated learning for LEO constellations via inter-HAP links [0.0]
Low Earth Obit (LEO) satellite constellations have seen a sharp increase of deployment in recent years.
To apply machine learning (ML) in such applications, the traditional way of downloading satellite data such as imagery to a ground station (GS) is not desirable.
We show that existing FL solutions do not fit well in such LEO constellation scenarios because of significant challenges such as excessive convergence delay and unreliable wireless channels.
arXiv Detail & Related papers (2022-05-15T08:22:52Z) - Learning Emergent Random Access Protocol for LEO Satellite Networks [51.575090080749554]
We propose a novel grant-free random access solution for LEO SAT networks, dubbed emergent random access channel protocol (eRACH)
eRACH is a model-free approach that emerges through interaction with the non-stationary network environment.
Compared to RACH, we show from various simulations that our proposed eRACH yields 54.6% higher average network throughput.
arXiv Detail & Related papers (2021-12-03T07:44:45Z) - Deep Learning Aided Routing for Space-Air-Ground Integrated Networks
Relying on Real Satellite, Flight, and Shipping Data [79.96177511319713]
Current maritime communications mainly rely on satellites having meager transmission resources, hence suffering from poorer performance than modern terrestrial wireless networks.
With the growth of transcontinental air traffic, the promising concept of aeronautical ad hoc networking relying on commercial passenger airplanes is potentially capable of enhancing satellite-based maritime communications via air-to-ground and multi-hop air-to-air links.
We propose space-air-ground integrated networks (SAGINs) for supporting ubiquitous maritime communications, where the low-earth-orbit satellite constellations, passenger airplanes, terrestrial base stations, ships, respectively, serve as the space-, air-,
arXiv Detail & Related papers (2021-10-28T14:12:10Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
A mega-constellation of low-earth orbit (LEO) satellites has the potential to enable long-range communication with low latency.
We study the problem of forwarding packets between two faraway ground terminals, through an LEO satellite selected from an orbiting constellation.
To maximize the end-to-end data rate, the satellite association and HAP location should be optimized.
We tackle this problem using deep reinforcement learning (DRL) with a novel action dimension reduction technique.
arXiv Detail & Related papers (2020-05-26T05:39:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.