Towards Understanding Sensitive and Decisive Patterns in Explainable AI: A Case Study of Model Interpretation in Geometric Deep Learning
- URL: http://arxiv.org/abs/2407.00849v1
- Date: Sun, 30 Jun 2024 22:59:15 GMT
- Title: Towards Understanding Sensitive and Decisive Patterns in Explainable AI: A Case Study of Model Interpretation in Geometric Deep Learning
- Authors: Jiajun Zhu, Siqi Miao, Rex Ying, Pan Li,
- Abstract summary: This research focuses on distinguishing between two critical data patterns -- sensitive patterns (model-related) and decisive patterns (task-related)
We compare the effectiveness of two main streams of interpretation methods: post-hoc methods and self-interpretable methods.
Our findings indicate that post-hoc methods tend to provide interpretations better aligned with sensitive patterns, whereas certain self-interpretable methods exhibit strong and stable performance in detecting decisive patterns.
- Score: 18.408342615833185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The interpretability of machine learning models has gained increasing attention, particularly in scientific domains where high precision and accountability are crucial. This research focuses on distinguishing between two critical data patterns -- sensitive patterns (model-related) and decisive patterns (task-related) -- which are commonly used as model interpretations but often lead to confusion. Specifically, this study compares the effectiveness of two main streams of interpretation methods: post-hoc methods and self-interpretable methods, in detecting these patterns. Recently, geometric deep learning (GDL) has shown superior predictive performance in various scientific applications, creating an urgent need for principled interpretation methods. Therefore, we conduct our study using several representative GDL applications as case studies. We evaluate thirteen interpretation methods applied to three major GDL backbone models, using four scientific datasets to assess how well these methods identify sensitive and decisive patterns. Our findings indicate that post-hoc methods tend to provide interpretations better aligned with sensitive patterns, whereas certain self-interpretable methods exhibit strong and stable performance in detecting decisive patterns. Additionally, our study offers valuable insights into improving the reliability of these interpretation methods. For example, ensembling post-hoc interpretations from multiple models trained on the same task can effectively uncover the task's decisive patterns.
Related papers
- CausalGym: Benchmarking causal interpretability methods on linguistic
tasks [52.61917615039112]
We use CausalGym to benchmark the ability of interpretability methods to causally affect model behaviour.
We study the pythia models (14M--6.9B) and assess the causal efficacy of a wide range of interpretability methods.
We find that DAS outperforms the other methods, and so we use it to study the learning trajectory of two difficult linguistic phenomena.
arXiv Detail & Related papers (2024-02-19T21:35:56Z) - Revealing Multimodal Contrastive Representation Learning through Latent
Partial Causal Models [85.67870425656368]
We introduce a unified causal model specifically designed for multimodal data.
We show that multimodal contrastive representation learning excels at identifying latent coupled variables.
Experiments demonstrate the robustness of our findings, even when the assumptions are violated.
arXiv Detail & Related papers (2024-02-09T07:18:06Z) - A Probabilistic Model Behind Self-Supervised Learning [53.64989127914936]
In self-supervised learning (SSL), representations are learned via an auxiliary task without annotated labels.
We present a generative latent variable model for self-supervised learning.
We show that several families of discriminative SSL, including contrastive methods, induce a comparable distribution over representations.
arXiv Detail & Related papers (2024-02-02T13:31:17Z) - Rethinking Distribution Shifts: Empirical Analysis and Inductive Modeling for Tabular Data [30.518020409197767]
We build an empirical testbed comprising natural shifts across 5 datasets and 60,000 method configurations.
We find $Y|X$-shifts are most prevalent on our testbed, in stark contrast to the heavy focus on $X$ (co)-shifts in the ML literature.
arXiv Detail & Related papers (2023-07-11T14:25:10Z) - Benchmarking the Robustness of LiDAR Semantic Segmentation Models [78.6597530416523]
In this paper, we aim to comprehensively analyze the robustness of LiDAR semantic segmentation models under various corruptions.
We propose a new benchmark called SemanticKITTI-C, which features 16 out-of-domain LiDAR corruptions in three groups, namely adverse weather, measurement noise and cross-device discrepancy.
We design a robust LiDAR segmentation model (RLSeg) which greatly boosts the robustness with simple but effective modifications.
arXiv Detail & Related papers (2023-01-03T06:47:31Z) - TorchEsegeta: Framework for Interpretability and Explainability of
Image-based Deep Learning Models [0.0]
Clinicians are often sceptical about applying automatic image processing approaches, especially deep learning based methods, in practice.
This paper presents approaches that help to interpret and explain the results of deep learning algorithms by depicting the anatomical areas which influence the decision of the algorithm most.
Research presents a unified framework, TorchEsegeta, for applying various interpretability and explainability techniques for deep learning models.
arXiv Detail & Related papers (2021-10-16T01:00:15Z) - Influence Tuning: Demoting Spurious Correlations via Instance
Attribution and Instance-Driven Updates [26.527311287924995]
influence tuning can help deconfounding the model from spurious patterns in data.
We show that in a controlled setup, influence tuning can help deconfounding the model from spurious patterns in data.
arXiv Detail & Related papers (2021-10-07T06:59:46Z) - On the Lack of Robust Interpretability of Neural Text Classifiers [14.685352584216757]
We assess the robustness of interpretations of neural text classifiers based on pretrained Transformer encoders.
Both tests show surprising deviations from expected behavior, raising questions about the extent of insights that practitioners may draw from interpretations.
arXiv Detail & Related papers (2021-06-08T18:31:02Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
In computer vision applications, generative counterfactual methods indicate how to perturb a model's input to change its prediction.
We propose a counterfactual method that learns a perturbation in a disentangled latent space that is constrained using a diversity-enforcing loss.
Our model improves the success rate of producing high-quality valuable explanations when compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-18T12:57:34Z) - Model-agnostic interpretation by visualization of feature perturbations [0.0]
We propose a model-agnostic interpretation approach that uses visualization of feature perturbations induced by the particle swarm optimization algorithm.
We validate our approach both qualitatively and quantitatively on publicly available datasets.
arXiv Detail & Related papers (2021-01-26T00:53:29Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
We present a general methodology for interpretable evaluation for the named entity recognition (NER) task.
The proposed evaluation method enables us to interpret the differences in models and datasets, as well as the interplay between them.
By making our analysis tool available, we make it easy for future researchers to run similar analyses and drive progress in this area.
arXiv Detail & Related papers (2020-11-13T10:53:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.