PointViG: A Lightweight GNN-based Model for Efficient Point Cloud Analysis
- URL: http://arxiv.org/abs/2407.00921v2
- Date: Mon, 16 Sep 2024 15:28:31 GMT
- Title: PointViG: A Lightweight GNN-based Model for Efficient Point Cloud Analysis
- Authors: Qiang Zheng, Yafei Qi, Chen Wang, Chao Zhang, Jian Sun,
- Abstract summary: This study introduces b>Pointb> b>Vib>sion b>Gb>NN (PointViG), an efficient framework for point cloud analysis.
PointViG incorporates a lightweight graph convolutional module to efficiently aggregate local features.
Experiments demonstrate that PointViG achieves performance comparable to state-of-the-art models.
- Score: 42.187844778761935
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the domain of point cloud analysis, despite the significant capabilities of Graph Neural Networks (GNNs) in managing complex 3D datasets, existing approaches encounter challenges like high computational costs and scalability issues with extensive scenarios. These limitations restrict the practical deployment of GNNs, notably in resource-constrained environments. To address these issues, this study introduce <b>Point<\b> <b>Vi<\b>sion <b>G<\b>NN (PointViG), an efficient framework for point cloud analysis. PointViG incorporates a lightweight graph convolutional module to efficiently aggregate local features and mitigate over-smoothing. For large-scale point cloud scenes, we propose an adaptive dilated graph convolution technique that searches for sparse neighboring nodes within a dilated neighborhood based on semantic correlation, thereby expanding the receptive field and ensuring computational efficiency. Experiments demonstrate that PointViG achieves performance comparable to state-of-the-art models while balancing performance and complexity. On the ModelNet40 classification task, PointViG achieved 94.3% accuracy with 1.5M parameters. For the S3DIS segmentation task, it achieved an mIoU of 71.7% with 5.3M parameters. These results underscore the potential and efficiency of PointViG in point cloud analysis.
Related papers
- Point Cloud Denoising With Fine-Granularity Dynamic Graph Convolutional Networks [58.050130177241186]
Noise perturbations often corrupt 3-D point clouds, hindering downstream tasks such as surface reconstruction, rendering, and further processing.
This paper introduces finegranularity dynamic graph convolutional networks called GDGCN, a novel approach to denoising in 3-D point clouds.
arXiv Detail & Related papers (2024-11-21T14:19:32Z) - Parameter-Efficient Fine-Tuning in Spectral Domain for Point Cloud Learning [49.91297276176978]
We propose a novel.
Efficient Fine-Tuning (PEFT) method for point cloud, called Point GST.
Point GST freezes the pre-trained model and introduces a trainable Point Cloud Spectral Adapter (PCSA) to finetune parameters in the spectral domain.
Extensive experiments on challenging point cloud datasets demonstrate that Point GST not only outperforms its fully finetuning counterpart but also significantly reduces trainable parameters.
arXiv Detail & Related papers (2024-10-10T17:00:04Z) - PointGL: A Simple Global-Local Framework for Efficient Point Cloud
Analysis [19.163081544030547]
We introduce a novel, uncomplicated yet potent architecture known as PointGL to facilitate efficient point cloud analysis.
The fusion of one-time point embedding and parameter-free graph pooling contributes to PointGL's defining attributes of minimized model complexity and heightened efficiency.
Our PointGL attains state-of-the-art accuracy on the ScanObjectNN dataset while exhibiting a runtime that is more than 5 times faster and utilizing only approximately 4% of the FLOPs and 30% of the parameters compared to the recent PointMLP model.
arXiv Detail & Related papers (2024-01-22T02:05:33Z) - PosDiffNet: Positional Neural Diffusion for Point Cloud Registration in
a Large Field of View with Perturbations [27.45001809414096]
PosDiffNet is a model for point cloud registration in 3D computer vision.
We leverage a graph neural partial differential equation (PDE) based on Beltrami flow to obtain high-dimensional features.
We employ the multi-level correspondence derived from the high feature similarity scores to facilitate alignment between point clouds.
We evaluate PosDiffNet on several 3D point cloud datasets, verifying that it achieves state-of-the-art (SOTA) performance for point cloud registration in large fields of view with perturbations.
arXiv Detail & Related papers (2024-01-06T08:58:15Z) - PointeNet: A Lightweight Framework for Effective and Efficient Point
Cloud Analysis [28.54939134635978]
PointeNet is a network designed specifically for point cloud analysis.
Our method demonstrates flexibility by seamlessly integrating with a classification/segmentation head or embedding into off-the-shelf 3D object detection networks.
Experiments on object-level datasets, including ModelNet40, ScanObjectNN, ShapeNet KITTI, and the scene-level dataset KITTI, demonstrate the superior performance of PointeNet over state-of-the-art methods in point cloud analysis.
arXiv Detail & Related papers (2023-12-20T03:34:48Z) - MLGCN: An Ultra Efficient Graph Convolution Neural Model For 3D Point
Cloud Analysis [4.947552172739438]
We introduce a novel Multi-level Graph Convolution Neural (MLGCN) model, which uses Graph Neural Networks (GNN) blocks to extract features from 3D point clouds at specific locality levels.
Our approach produces comparable results to those of state-of-the-art models while requiring up to a thousand times fewer floating-point operations (FLOPs) and having significantly reduced storage requirements.
arXiv Detail & Related papers (2023-03-31T00:15:22Z) - HPGNN: Using Hierarchical Graph Neural Networks for Outdoor Point Cloud
Processing [0.7649716717097428]
Motivated by recent improvements in point cloud processing for autonomous navigation, we focus on using hierarchical graph neural networks for processing.
We propose Hierarchical Point Graph Neural Network (HPGNN)
It learns node features at various levels of graph coarseness to extract information.
This enables to learn over a large point cloud while retaining fine details that existing point-level graph networks struggle to achieve.
arXiv Detail & Related papers (2022-06-05T11:18:09Z) - Learning Semantic Segmentation of Large-Scale Point Clouds with Random
Sampling [52.464516118826765]
We introduce RandLA-Net, an efficient and lightweight neural architecture to infer per-point semantics for large-scale point clouds.
The key to our approach is to use random point sampling instead of more complex point selection approaches.
Our RandLA-Net can process 1 million points in a single pass up to 200x faster than existing approaches.
arXiv Detail & Related papers (2021-07-06T05:08:34Z) - Local Grid Rendering Networks for 3D Object Detection in Point Clouds [98.02655863113154]
CNNs are powerful but it would be computationally costly to directly apply convolutions on point data after voxelizing the entire point clouds to a dense regular 3D grid.
We propose a novel and principled Local Grid Rendering (LGR) operation to render the small neighborhood of a subset of input points into a low-resolution 3D grid independently.
We validate LGR-Net for 3D object detection on the challenging ScanNet and SUN RGB-D datasets.
arXiv Detail & Related papers (2020-07-04T13:57:43Z) - GPS-Net: Graph Property Sensing Network for Scene Graph Generation [91.60326359082408]
Scene graph generation (SGG) aims to detect objects in an image along with their pairwise relationships.
GPS-Net fully explores three properties for SGG: edge direction information, the difference in priority between nodes, and the long-tailed distribution of relationships.
GPS-Net achieves state-of-the-art performance on three popular databases: VG, OI, and VRD by significant gains under various settings and metrics.
arXiv Detail & Related papers (2020-03-29T07:22:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.