Decoding AI Judgment: How LLMs Assess News Credibility and Bias
- URL: http://arxiv.org/abs/2502.04426v2
- Date: Thu, 10 Jul 2025 14:31:21 GMT
- Title: Decoding AI Judgment: How LLMs Assess News Credibility and Bias
- Authors: Edoardo Loru, Jacopo Nudo, Niccolò Di Marco, Alessandro Santirocchi, Roberto Atzeni, Matteo Cinelli, Vincenzo Cestari, Clelia Rossi-Arnaud, Walter Quattrociocchi,
- Abstract summary: Large Language Models (LLMs) are increasingly embedded in that involve evaluative processes.<n>This raises the need to examine how such evaluations are built, what assumptions they rely on, and how their strategies diverge from those of humans.<n>We benchmark six LLMs against expert ratings--NewsGuard and Media Bias/Fact Check (MBFC)--and against human judgments collected through a controlled experiment.
- Score: 33.7054351451505
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) are increasingly embedded in workflows that involve evaluative processes. This raises the need to examine how such evaluations are built, what assumptions they rely on, and how their strategies diverge from those of humans. We benchmark six LLMs against expert ratings--NewsGuard and Media Bias/Fact Check (MBFC)--and against human judgments collected through a controlled experiment. To enable direct comparison, we implement a structured agentic framework in which both models and non-expert participants follow the same evaluation procedure: selecting criteria, retrieving content, and producing justifications. Despite output alignment, LLMs rely on different mechanisms: lexical associations and statistical priors replace contextual reasoning. This reliance produces systematic effects: political asymmetries, opaque justifications, and a tendency to confuse linguistic form with epistemic validity. Delegating judgment to such systems does not merely automate evaluation--it redefines it, shifting from normative reasoning to pattern-based approximation.
Related papers
- Skewed Score: A statistical framework to assess autograders [2.9645858732618238]
"LLM-as-a-judge", or autograders, offer a scalable alternative to human evaluation.<n>They have shown mixed reliability and may exhibit systematic biases.<n>We propose a statistical framework that enables researchers to simultaneously assess their autograders.
arXiv Detail & Related papers (2025-07-04T18:45:10Z) - How do Large Language Models Understand Relevance? A Mechanistic Interpretability Perspective [64.00022624183781]
Large language models (LLMs) can assess relevance and support information retrieval (IR) tasks.
We investigate how different LLM modules contribute to relevance judgment through the lens of mechanistic interpretability.
arXiv Detail & Related papers (2025-04-10T16:14:55Z) - Multi-Agent LLM Judge: automatic personalized LLM judge design for evaluating natural language generation applications [0.0]
Large Language Models (LLMs) have demonstrated impressive performance across diverse domains, yet they still encounter challenges such as insufficient domain-specific knowledge, biases, and hallucinations.<n>Traditional evaluation methods, which rely on word overlap or text embeddings, are inadequate for capturing the nuanced semantic information necessary to evaluate dynamic, open-ended text generation.<n>We propose a novel dynamic multi-agent system that automatically designs personalized LLM judges for various natural language generation applications.
arXiv Detail & Related papers (2025-04-01T09:36:56Z) - BEATS: Bias Evaluation and Assessment Test Suite for Large Language Models [0.0]
We introduce BEATS, a novel framework for evaluating Bias, Ethics, Fairness, and Factuality in Large Language Models (LLMs)<n>We present a bias benchmark for LLMs that measure performance across 29 distinct metrics.<n>These metrics span a broad range of characteristics, including demographic, cognitive, and social biases, as well as measures of ethical reasoning, group fairness, and factuality related misinformation risk.
arXiv Detail & Related papers (2025-03-31T16:56:52Z) - Rankers, Judges, and Assistants: Towards Understanding the Interplay of LLMs in Information Retrieval Evaluation [44.58099275559231]
Large language models (LLMs) are increasingly integral to information retrieval (IR), powering ranking, evaluation, and AI-assisted content creation.
This paper synthesizes existing research and presents novel experiment designs that explore how LLM-based rankers and assistants influence LLM-based judges.
arXiv Detail & Related papers (2025-03-24T19:24:40Z) - An Empirical Analysis of Uncertainty in Large Language Model Evaluations [28.297464655099034]
We conduct experiments involving 9 widely used LLM evaluators across 2 different evaluation settings.
We pinpoint that LLM evaluators exhibit varying uncertainty based on model families and sizes.
We find that employing special prompting strategies, whether during inference or post-training, can alleviate evaluation uncertainty to some extent.
arXiv Detail & Related papers (2025-02-15T07:45:20Z) - Value Compass Leaderboard: A Platform for Fundamental and Validated Evaluation of LLMs Values [76.70893269183684]
Large Language Models (LLMs) achieve remarkable breakthroughs, aligning their values with humans has become imperative.
Existing evaluations focus narrowly on safety risks such as bias and toxicity.
Existing benchmarks are prone to data contamination.
The pluralistic nature of human values across individuals and cultures is largely ignored in measuring LLMs value alignment.
arXiv Detail & Related papers (2025-01-13T05:53:56Z) - Diverging Preferences: When do Annotators Disagree and do Models Know? [92.24651142187989]
We develop a taxonomy of disagreement sources spanning 10 categories across four high-level classes.
We find that the majority of disagreements are in opposition with standard reward modeling approaches.
We develop methods for identifying diverging preferences to mitigate their influence on evaluation and training.
arXiv Detail & Related papers (2024-10-18T17:32:22Z) - Decoding Biases: Automated Methods and LLM Judges for Gender Bias Detection in Language Models [47.545382591646565]
Large Language Models (LLMs) have excelled at language understanding and generating human-level text.
LLMs are susceptible to adversarial attacks where malicious users prompt the model to generate undesirable text.
In this work, we train models to automatically create adversarial prompts to elicit biased responses from target LLMs.
arXiv Detail & Related papers (2024-08-07T17:11:34Z) - To Know or Not To Know? Analyzing Self-Consistency of Large Language Models under Ambiguity [27.10502683001428]
This paper focuses on entity type ambiguity, analyzing the proficiency and consistency of state-of-the-art LLMs in applying factual knowledge when prompted with ambiguous entities.
Experiments reveal that LLMs struggle with choosing the correct entity reading, achieving an average accuracy of only 85%, and as low as 75% with underspecified prompts.
arXiv Detail & Related papers (2024-07-24T09:48:48Z) - Evaluating Human Alignment and Model Faithfulness of LLM Rationale [66.75309523854476]
We study how well large language models (LLMs) explain their generations through rationales.
We show that prompting-based methods are less "faithful" than attribution-based explanations.
arXiv Detail & Related papers (2024-06-28T20:06:30Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Enhancing Trust in LLMs: Algorithms for Comparing and Interpreting LLMs [1.0878040851638]
This paper surveys evaluation techniques to enhance the trustworthiness and understanding of Large Language Models (LLMs)
Key evaluation metrics include Perplexity Measurement, NLP metrics (BLEU, ROUGE, METEOR, BERTScore, GLEU, Word Error Rate, Character Error Rate), Zero-Shot and Few-Shot Learning Performance, Transfer Learning Evaluation, Adversarial Testing, and Fairness and Bias Evaluation.
arXiv Detail & Related papers (2024-06-04T03:54:53Z) - DnA-Eval: Enhancing Large Language Model Evaluation through Decomposition and Aggregation [75.81096662788254]
Large Language Models (LLMs) are scalable and economical evaluators.<n>The question of how reliable these evaluators are has emerged as a crucial research question.<n>We propose Decompose and Aggregate, which breaks down the evaluation process into different stages based on pedagogical practices.
arXiv Detail & Related papers (2024-05-24T08:12:30Z) - Evaluating Interventional Reasoning Capabilities of Large Language Models [58.52919374786108]
Large language models (LLMs) are used to automate decision-making tasks.<n>In this paper, we evaluate whether LLMs can accurately update their knowledge of a data-generating process in response to an intervention.<n>We create benchmarks that span diverse causal graphs (e.g., confounding, mediation) and variable types.<n>These benchmarks allow us to isolate the ability of LLMs to accurately predict changes resulting from their ability to memorize facts or find other shortcuts.
arXiv Detail & Related papers (2024-04-08T14:15:56Z) - TrustScore: Reference-Free Evaluation of LLM Response Trustworthiness [58.721012475577716]
Large Language Models (LLMs) have demonstrated impressive capabilities across various domains, prompting a surge in their practical applications.
This paper introduces TrustScore, a framework based on the concept of Behavioral Consistency, which evaluates whether an LLMs response aligns with its intrinsic knowledge.
arXiv Detail & Related papers (2024-02-19T21:12:14Z) - MR-GSM8K: A Meta-Reasoning Benchmark for Large Language Model Evaluation [60.65820977963331]
We introduce a novel evaluation paradigm for Large Language Models (LLMs)
This paradigm shifts the emphasis from result-oriented assessments, which often neglect the reasoning process, to a more comprehensive evaluation.
By applying this paradigm in the GSM8K dataset, we have developed the MR-GSM8K benchmark.
arXiv Detail & Related papers (2023-12-28T15:49:43Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
We introduce a novel task, Counterfactual Logical Modification (CLOMO), and a high-quality human-annotated benchmark.
In this task, LLMs must adeptly alter a given argumentative text to uphold a predetermined logical relationship.
We propose an innovative evaluation metric, the Self-Evaluation Score (SES), to directly evaluate the natural language output of LLMs.
arXiv Detail & Related papers (2023-11-29T08:29:54Z) - Are Large Language Models Reliable Judges? A Study on the Factuality
Evaluation Capabilities of LLMs [8.526956860672698]
Large Language Models (LLMs) have gained immense attention due to their notable emergent capabilities.
This study investigates the potential of LLMs as reliable assessors of factual consistency in summaries generated by text-generation models.
arXiv Detail & Related papers (2023-11-01T17:42:45Z) - Exploring the Reliability of Large Language Models as Customized Evaluators for Diverse NLP Tasks [65.69651759036535]
We analyze whether large language models (LLMs) can serve as reliable alternatives to humans.<n>This paper explores both conventional tasks (e.g., story generation) and alignment tasks (e.g., math reasoning)<n>We find that LLM evaluators can generate unnecessary criteria or omit crucial criteria, resulting in a slight deviation from the experts.
arXiv Detail & Related papers (2023-10-30T17:04:35Z) - FELM: Benchmarking Factuality Evaluation of Large Language Models [40.78878196872095]
We introduce a benchmark for Factuality Evaluation of large Language Models, referred to as felm.
We collect responses generated from large language models and annotate factuality labels in a fine-grained manner.
Our findings reveal that while retrieval aids factuality evaluation, current LLMs are far from satisfactory to faithfully detect factual errors.
arXiv Detail & Related papers (2023-10-01T17:37:31Z) - Bring Your Own Data! Self-Supervised Evaluation for Large Language
Models [52.15056231665816]
We propose a framework for self-supervised evaluation of Large Language Models (LLMs)
We demonstrate self-supervised evaluation strategies for measuring closed-book knowledge, toxicity, and long-range context dependence.
We find strong correlations between self-supervised and human-supervised evaluations.
arXiv Detail & Related papers (2023-06-23T17:59:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.